WG 9 Language and Mathematics

Students' mathematical meanings and practices

TITLE	AUTHOR
Seeing-acting-speaking in geometry: A case study	T. Barrier, C. Hache & AC. Mathé
Meanings of the concept of finite limit of a function at one point: Background and advances	J. A. Fernández- Plaza, L. Rico & J. Ruiz
Linguistic intercourse with spatial perception: Comparative analysis in primary school, infant school and the family	M. Schütte

Some facts on language

- Language is contextual.
- Learning mathematics means entering in specific:
 - ways to interpret the world
 - language practices
- Language is at the same time:
 - part of the focus of learning
 - medium of the social negotiation of the specificity of mathematical practices and of the meanings of terms;
 - most of these terms are extracted from everyday language.

Some examples

- The meaning of the word "circle" (Hache, Mathé), and the meaning of specific terms related to the concept of limit (Fernández-Plaza).
- The explicit or implicit use of language in the learning of spatial geometry
 - deictical language with pointing vs. the teacher acting as a model for learning the language of mathematics (Schütte)

... and some questions

- What is the role of language in the negotiation of particular meanings in mathematics?
- Which are the difficulties because of conflicts between everyday and mathematical meanings?
- How to support pupils in the learning of the language of mathematics?
 - How to train teachers about this?
 - What are the competences required by the teachers and students concerning the use of the language of mathematics?

Semiotic systems and representations

TITLE	AUTHOR
Place of the conversion of semiotic representations in the didactic framework R ² C ²	M. Priolet
Making sense of fractions given with different semiotic representations	F. Rønning
Perceiving calculus ideas in a dynamic and multi-semiotic environment –the case of the antiderivative	O. Swidan
Choice of notation in the process of abstraction	M. Nosrati

- Topics of the session
 - Mediation by semiotic representations
 - Use of artefacts
 - Working with specific mathematical concepts
- What is being solved?
 - Looking into processes of learning/perception/ meaning making
 - Students' choices in the learning process

- Aim of the research
 - Based on carefully designed learning environments
 - Implications for pedagogical practice
- New directions
 - Design similar learning environments centered around other mathematical concepts
 - Students' choices have been described: What is behind theses choices?

Group discussion, norms and communication

TITLE	AUTHOR
Design and validation of a tool for the analysis of whole group discussions in the math classroom	L. Morera, N. Planas & J. Fortuny
Factors affecting the establishment of social and socio-mathematical norms	K. Tatsis
The productive role of interaction: Students' algebraic thinking in whole group discussion	N. Planas & J. Chico
Writer identity as an analytical tool to explore students' mathematical writing	S. Iversen

Why this grouping?

What the four papers have in common is that each points somehow to the question raised by Candia in her plenary:

How does the use of language position students in relation to (the learning of) mathematics?

KEY NOTIONS	INTERPRETATIONS
Language use	Verbal acts (and interaction)
Discourse	Language in action
Mathematics	School mathematical practices
Learner	Student in a classroom
Learning	(Opportunities for) Participation
Identity	Positioning in a school mathematics discourse

Diverse languages in the teaching and learning of mathematics

TITLE	AUTHOR
A comparison of Irish and English language features and the potential impact on mathematical processing	M. Ni Ríordáin
An investigation into the tension arising between natural language and mathematical language experienced by mechanical engineering students	M. D. Peters & E. Graham

Why this grouping?

What the two papers have in common is that each points to experiences of language tensions in the learning of mathematics.

LANGUAGE TENSIONS	AUTHOR
School dominant language (English / Irish-Gaeilge) vs. Home dominant language (Irish-Gaeilge / English) in the bilingual mathematics classroom at primary	M. Ni Ríordáin
Formal language (mathematical register) vs. Informal language (natural register) in mechanical engineering students' expression of their mathematical thinking	M. D. Peters & E. Graham

Significant differences

There are important differences between the two papers' empirical and theoretical approaches.

CRITERION	DIFFERENCE
Theories	(Psycho-)Linguistics, Embodied Cognition
School levels	Primary, College
Objects	The Irish-Gaeilge language, The mathematics register
Methods	Semantic and syntactic analyses, Content analysis
Data sources	Semantics and syntax, Students' task-based questionnaires
Emphases	Language production, Speech and communication
Assumptions	Language processing mediates mathematical thinking, Environmental conditions mediate mathematical thinking

Use of tools and interactional strategies by teachers

TITLE	AUTHOR
The use of ICT to support children's reflective language	E. Riesbeck
Primapodcasts: Vocal representation in mathematics	C. Schreiber
The influence of how teachers interactionally manage mathematical mistakes on the mathematics that students experience	J. Ingram, F. Baldry & A. Pitt

Main facts

- The emphasis was on ICT as a tool for communication.
- Children do engage in communicating about what they have learned with technology.
- Podcasts videocasts
 - cannot change
 - students need drafts
 - are essentially different from other outputs
 - the audience is different

... more facts

- ICT do not necessarily improve communication
- Computers enable to rewind and revisit

Key point

- Different tools
 - camera
 - on the computer
 - podcasts

Different communication

- forms/structure
- language
 - more mathematical
 - more reflective

Questions and suggestions

- Can ICT tools change the norms of interaction?
- What is the influence of
 - -the tool itself?
 - -the (number of) person(s) who interact?
 - -the way of interaction?

Didactical environments, scaffolding and mediation

TITLE	AUTHOR
A linguistic analysis of the didactical environment in support of the scaffolding concept	T. Dias & C. T. Christinat
Reading stories to work on problem solving skills	M. Moulin & V. Deloustal- Jorrand

• Similarities:

- Work on **oral** language used between teacher and pupils.
- Presence of a paradoxical question concerning the didactical contract. The problem is avoided by the pupils.
- The teacher gives the task not to be solved but to help the pupils to learn from the task.

• Findings:

- Scaffolding by making the problem more like real life makes the situation worse, the pupils give more paradoxical answers.
- Using a story in the classroom instead of a usual text problem can lead to dividing the problem into small parts – reducing the complexity and the antagonism expected by the didactical situation.
- Because of the references included in the language, children tend to consider each problem as a case of a general set of problems.

- Two approaches :
 - Start with a didactical question and look at it from a linguistic perspective
 - Start with a linguistic question which leads to didactical approach
- Questions, new directions for research:
 - The language can help learning new knowledge. However, could it also be a factor preventing pupils from learning ?