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We will present an epistemological narrative based on a corpus of historical texts 
pertaining to the theorem: the sign of the derivative of f determines the variations of 
f. From a didactical perspective, the main points are: (1) the texts illustrate the role 
of “local” counter-examples (to use Lakatosian terminology); (2) the various proof-
attempts are based on at least two pretty different proof-ideas; (3) even a proper 
(meaning, both intuitive and formal) understanding of the concepts involved in the 
statement of the theorem may lead to a faulty proof scheme; (4) it helps understand 
how long deductive chains emerge and stabilise. On the basis of this narrative, we 
eventually underline connections with current research works on proof in 
mathematical analysis, and mention teaching and teacher-training perspectives. 
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RATIONALE 
In the twentieth century, most tertiary-level textbooks of mathematical analysis prove 
the following theorem: let f be a differentiable real-valued function defined on an 
interval, if its derivative f’ is positive, then f increases over this interval. Its standard 
proof is a rather straightforward application of the “mean value theorem”1 (“égalité 
des accroissements finis” in French, “Mittelwertsatz” in German); the proof of which 
is a rather straightforward application of the “Rolle theorem”2

With this example, we can see that the proof of a rather intuitive qualitative fact 
(namely: if all the tangents point upward, the curve has to move up) requires several 
layers of sophisticated concepts (differentiability, continuity, properties of the 
numerical continuum), and a few standard tricks (affine changes of variable). In this 

, which, in turn, 
depends on the fact that a continuous real-valued function defined on a closed and 
bounded (i.e. compact) interval has a maximum or a minimum. The latter fact, 
although quite intuitive, depends on not-so-trivial properties of the set of real 
numbers (completeness of the metric space, local compactness). Historically 
speaking, this deductive chain can be found in the textbook (Jordan, 1893, p.65-67). 

                                           
1 Let f be a differentiable real-valued function, defined over some interval [a,b], there exists a value 
c between a and b such that 𝑓′(𝑐) = 𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. Geometrically speaking: on the arc of curve joining 

the points (a,f(a)) and (b,f(b)), there is a point where the tangent is parallel to the chord joining the 
two endpoints. 
2 Let f  be a differentiable real-valued function, defined over some interval [a,b], such that f(a) = 
f(b). There is a value c between a and b for which the derivative vanishes. 



  
paper, we will present some of the proofs given, over the 19th century, either of this 
mathematical fact, or of some key points in its proof; and some instances of critical 
proof-analysis. 
We must stress the fact that this paper is not a work in the history of mathematics, but 
a work of an epistemological nature based on a historical corpus. The corpus consists 
of documents that we selected and translated into English (from the French or 
German languages). For lack of space, only part of the corpus can be presented here 
(for a more comprehensive presentation, see (Chorlay, 2012)). Quite a few works in 
maths education research have focused on similar issues (for recent examples: (Arsac 
& Durand-Guerrier, 2005), (Barrier, 2009)): our goals are (1) to make this new 
corpus available to this community of researchers; (2) to compare what this corpus 
helps document with current research perspectives on proof in mathematical analysis; 
and (3) to point to potential uses in a teaching or teacher-training context. 

LAGRANGE’S PROOF (1806) 
Let us quote the beginning of Lagrange’s proof 

A function which vanishes when the variable vanishes, will, as the variable increases 
positively, have finite values of the same sign as that of its derived function; or of the 
opposite sign if the variable increases negatively, as long as the values of the derived 
function keep the same sign and do not become infinite. 
(...) Let us consider the function𝑓(𝑥 + 𝑖), whose general development is  

𝑓(𝑥) + 𝑖𝑓 ′(𝑥) + 𝑖2

2!
𝑓 ′′(𝑥) + ⋯ . 

As we saw in the former lesson, the form of the development may be different for 
some specific values of x; but we saw that, as long as 𝑓 ′(𝑥) is not infinite, the first 
two terms of the expansion are exact; and that the other terms will, consequently, 
contain powers of i greater than the first, so that we shall have 

𝑓(𝑥 + 𝑖) = 𝑓(𝑥) + 𝑖[𝑓′(𝑥) + 𝑉], 
V being a function of x and i, which vanishes when i = 0. 
So, since V vanishes when i vanishes, it is clear that, should i be made to increase 
from zero through imperceptible degrees, the value of V would also increase from 
zero by imperceptible degrees, either positively or negatively, up to a certain point, 
after which it may decrease; consequently, one will always be able to assign to i a 
value such that the corresponding value of V – regardless of the sign – is less than 
any given quantity, and that for lesser values of i, the values of V are also lesser. 
Let D be a given quantity, which may be chosen as small as one pleases; one can 
always assign to i a value so small that the values of V are bounded by the limits D 
and –D; so, since we have 

𝑓(𝑥 + 𝑖) = 𝑓(𝑥) + 𝑖[𝑓′(𝑥) + 𝑉], 



  

It follows that the quantity 𝑓(𝑥 + 𝑖) − 𝑓(𝑥) will be bound by these two 
     𝑖[𝑓′(𝑥) ± 𝐷].  (Lagrange, 1884, p.86-89) 

In this passage, we can see that Lagrange also had a proper numerical understanding 
what the value of the derivative at a given point represents, and that he did interpret 
limits as relationships of dependence between inequalities. For instance, he rephrased 
“V being a function of x and i, which vanishes when i = 0” as “one will always be 
able to assign to i a value such that the corresponding value of V – regardless of the 
sign – is less than any given quantity (...)”.  
In the part of the proof which we omitted (see (Chorlay, 2012) for a more 
comprehensive translation), Lagrange applied the above inequalities for x-values of 
type x+i, x+2i, ...,  x+ (n-1)i,  determined an upper bound for the sum, then passed to 
the limit. In spite of the fact that the theorem Lagrange set out to prove is correct, and 
that the proof relied on a correct numerical understanding of the derivative construed 
as a limit, something does not sound right in the proof: a critical reader may spot 
hidden uniformity assumptions (namely: uniform derivability), and circular chains of 
dependent quantities (see (Barrier, 2009) for a detailed analysis of very similar cases, 
and (Ferraro & Panza, 2012) for recent historical work on Lagrange).  

CAUCHY’S PROOF (1823) 

Problem. Assuming that the function y = f(x) is continuous relative to x in the 
neighborhood of specific value x = x0, one asks whether the function increases or 
decreases as from this value, as the variable itself is made to increase or decrease. 
Solution. Let ∆x, ∆y denote the infinitely small and simultaneous increments of 
variables x and y. The ∆y/∆x ratio has limit dy/dx = y’. It has to be inferred that, for 
very small numerical values of ∆x and for a specific value x0 of variable x, ratio 
∆y/∆x is positive if the corresponding value of y’ is positive and finite. (…) 
This being settled, let’s assume function y = f(x) remains continuous between two 
given limits x = x0 and x = X. If variable x is made to increase by imperceptible 
degrees from the first limit to the second one, function y shall increase every time its 
derivative, while being finite, has a positive value. (Cauchy, 1823, p.37) 

Unlike Lagrange, Cauchy defined the derivative as a limit; just like Lagrange, he was 
able to derive proper numerical conclusions from this numerical conception of the 
derivative. So what makes his argument so different from Lagrange’s ? Actually, they 
do not have the exact same understanding of what the conclusion to be reached is; 
both have implicit definitions3

                                           
3 We could use the notion of “in-action definitions” (Ouvrier-Buffet, 2011). For a more detailed 
analysis of Cauchy’s proof, see (Chorlay, 2007). 

 of what it is for a function to be increasing, but their 
definitions do not match exactly. Lagrange’s definition is closer to the one we find in 
today’s textbook: a real valued function defined over some interval I is an increasing 



  
function if, a and b being any elements of I, a < b implies f(a) < f(b). Lagrange’s 
(implicit) definition reads slightly differently, since he compared the values of f at 0 
and at any other given value.  
Cauchy’s implicit definition of an increasing function can be rephrased as follows: a 
real-valued function f defined over some interval I is an increasing function if, a 
being any element of I, there is a neighbourhood Na of a such that, for any x in Na, the 
order between f(a) and f(x) is the same as that between a and x. Lagrange’s definition 
is global, point-wise, and refers to two (arbitrarily, independently) given points; 
Cauchy’s definition is one in which some local property holds in the neighbourhood 
of every (arbitrarily) given point. It can be shown – but it takes a little work – that 
both definitions are actually equivalent from a mathematical viewpoint4

The fact that both definitions coincide from a mathematical viewpoint does not imply 
that proving that the first holds involves the same kind (and amount) of work than 
proving that the second holds. The information we start with (sign of the derivative) 
being of the everywhere-local-type, a mere rephrasing of the hypotheses leads to 
Cauchy’s definition of increasing functions, hence to the conclusion. Reaching 
Lagrange’s conclusion involves patching up local pieces of information to reach 
global conclusions, an endeavour which the modern reader knows to be usually 
tricky. 

. However, 
they differ significantly, both from an epistemological viewpoint (in which, for 
instance, the difference between local and global properties are put to the fore), and 
from a cognitive viewpoint (Chorlay, 2007).  

BONNET’S PROOF (IN J.-A. SERRET’S TEXTBOOK, 1868) 

Theorem I.- Let f(x) be a function of x which remains continuous for values of x 
between two given limits, and which, for these values, has a well-determined 
derivative f’(x). If x0 and X denote two values of x between these same limits, the 
following 𝑓(𝑋)−𝑓(𝑥0)

𝑋−𝑥0
= 𝑓 ′(𝑥1) , will hold, with x1 a value between x0 and X. 

Indeed, the ratio 𝑓(𝑋)−𝑓(𝑥0)
𝑋−𝑥0

 has, by hypothesis, a finite value; and, if A denotes this 
value, we will have    (1) [𝑓(𝑋) − 𝐴𝑋] − [𝑓(𝑥0)− 𝐴𝑥0] = 0. 
Let 𝜑(𝑥) denote the function of x defined by the formula 
(2)       𝜑(𝑥) = [𝑓(𝑥) − 𝐴𝑥] − [𝑓(𝑥0)− 𝐴𝑥0], 

then, from equality (1),   𝜑(𝑥0) = 0,  𝜑(𝑋) = 0, 

                                           
4 One must nevertheless stress the fact that if the Cauchy property holds at one given point x = a, it 
does not imply that the function is increasing in any neighbourhood of a. Consider x + 10 x2 sin 1/x 
in the neighbourhood of 0. 



  

so that 𝜑(𝑥) vanishes for x = x0 and for x = X. Let us assume, for instance, that X > x0, 
and let x increase from x0 to X; at first, the value of 𝜑(𝑥) is zero. If we assume that 
this function is not everywhere zero, for values of x between x0 and X, it will have to 
either begin to increase, thus taking on positive values, or begin to decrease, thus 
taking on negative values; be it from x = x0, or from some other value of x between x0 
and X. If these values are positive, since 𝜑(𝑥) is continuous and vanishes for x = X, it 
is obvious that there will be a value x1 between x0 and X such that 𝜑(𝑥1) is greater 
than or equal to the neighbouring values 𝜑(𝑥1 − ℎ),     𝜑(𝑥1 + ℎ), h being an 
arbitrarily small quantity.  
[Serret then proved that 𝜑′(𝑥1) = 0, by a well-known argument; and stressed that this 
proof idea is Ossian Bonnet’s] 
 (...) Theorem III.- If the derivative f’(x) of function f(x) remains finite for all the 
values of x between the limits 𝑥0, if X > 𝑥0, and if x is made to increase from 𝑥0 to X, 
the function f(x) will increase as long as the derivative f’(x) will not be negative, and 
it will decrease as long as f’(x) will not be positive. 

Indeed, since x lies between 𝑥0 and X, the ratio  𝑓(𝑥±ℎ)−𝑓(𝑥)
±ℎ

 has limit f’(x), which is a 
finite quantity; so it will of the same sign as that of the limit, for values of h between 
zero and some sufficiently small positive quantity 𝜀. Consequently, for these values 
of h, the following will hold 

𝑓(𝑥 − ℎ) <  𝑓(𝑥) < 𝑓(𝑥 + ℎ)     if f’(x) is > 0,  
 and 𝑓(𝑥 − ℎ) >  𝑓(𝑥) > 𝑓(𝑥 + ℎ)     if f’(x) is < 0. 

Thus, the function f(x) will increase, as from any value of x for which f’(x) is > 0; and 
decrease, as from any value of x for which f’(x) is < 0. (Serret, 1900, p.17-22) 

In this passage, Serret introduced Bonnet’s proof of the mean value theorem, a proof 
idea which relied on an affine change of variable and the vanishing of the derivative 
at a local extremum. The existence of the extremum is not proved (at least when one 
compares with later rewritings of this proof), but made obvious in the narrative style 
which is so typical of the first half of the 19th century. 
Strikingly, Serret did not use the mean value theorem to establish the relationship 
between the sign of f’ and the variations of f; he relied on Cauchy’s argument, hence 
on Cauchy’s notion of functional variation.   

PROOF-ANALYSIS AND REGRESSIVE ANALYSIS 
Proof-analysis: the role of uniform convergence 
We identified in Lagrange’s proof a flaw which can be described in several ways: 
implicit assumption of uniform differentiability; failure to notice that some variable is 
dependent on some other, while trying to consider the limit of second while leaving 
the first fixed; exchange, without due caution, of two limiting processes. The same 



  
flaws were common to most proofs in analysis which dealt with the numerical aspect 
of functions (as opposed to formal aspects) (Dugac 2003) (Chorlay 2012). 
At this point, one could choose to focus on texts where the new concepts of uniform 
convergence/continuity were first expressed with full clarity (Dugac 2003). Instead, 
we would like to stress the interest of texts which criticized faulty proofs, or spotted 
hidden lemmas. For now, let us quote just one excerpt from the correspondence 
between Hoüel and Darboux5

Here is where I find fault with your reasoning, which no one deems rigorous any 
more. When setting 

. In this passage (dated Jan. 1875), Darboux comments 
on the standard argument he read in the drafts of Hoüel’s textbook:  

𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ

− 𝑓 ′(𝑥) = 𝜀, 

𝜀 is a function of the two variables x and h which tends to zero when, leaving x fixed, 
h vanishes. But if x and h vary, as in your proof; even more, if every new subdivision 
𝑥1 − 𝑥0 generates new 𝜀 quantities, I cannot see anything clearly any more, and your 
proof becomes only seemingly rigorous. (...) You could get out of this predicament in 
one of two ways, 1. By changing proofs altogether, which I advise you to do. 2. By 
proving that if a function always admits a derivative between 𝑥0 and 𝑥𝑖, one can find 
a quantity h such that for all values of x between 𝑥0 and 𝑥𝑖, and all values 𝑥0 and ℎ1 
of h less than some limit value, one has 

𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ

− 𝑓 ′(𝑥) < 𝜀, 

where 𝜀 has a value which is fixed but chosen as small as one wishes; which  is 
difficult6

Regressive analysis: the role of the existence theorem for extrema 

. (Gispert, 1983, p.99-100) 

A critical mind might object to Bonnet’s proof of the mean value theorem that it 
depends on the existence of a maximum or a minimum, an existence which is 
implicitly taken for granted. It seems clear that if the function is piece-wise 
monotonous (as seems to be assumed in the text), it will indeed admit either a local 
maximum or a local minimum; but a differentiable function needs not be piece-wise 
monotonous, as the ever useful example 𝑓(𝑥) = 𝑥2𝑠𝑖𝑛 1

𝑥
 shows.  

In fact, the existence of a maximum can be grounded without piece-wise monotony, 
or continuous differentiability, as Weierstrass established, for instance in his 1878 
lectures on the theory of functions. The following passage has nothing to do a priori 
with calculus. It comes after the construction of the set of real numbers R (or, more 
                                           
5 This correspondence was published in (Gispert, 1983). It was discussed in (Balacheff, 1987). 
6 The fact that, if the derivative is continuous, then 𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 does tend to f’(x) uniformly on every 

closed and bounded interval was proved, for instance, in the second edition of Jordan’s textbook 
(Jordan, 1893, p.68). 



  

precisely, 𝐑� = [−∞, +∞]) starting from rational numbers. Weierstrass derived the 
existence theorem for extrema as a consequence of a very general and abstract 
theorem, proved using nested intervals (we quote the theorem but skip the proof): 

Let a value y correspond to every point (𝑥1, … , 𝑥𝑛) of some domain; then y is also a 
variable quantity, hence has a lower and an upper bound; let g denote it. Then, there 
exists at least one point in the x-domain (that point needs not belong to the defined 
domain), with the following property: if we consider however small a neighbourhood 
of that point, and consider the values of y corresponding to that x-domain, then these 
values of y also have an upper bound, this upper bound being exactly g. Similarly for 
the lower bound.  
(...) One is commonly faced with the question: among the values taken on by some 
magnitude, is there a maximum or a minimum (maximum or minimum in the 
absolute sense). Let y be a continuous function of x, y =f(x). Here, x must remain 
between two given limits a and b. In which circumstances is there a maximum and a 
minimum for y ? There is an upper bound for y. According to our proposition, there 
must be some point 𝑥0 in the x-domain such that the upper-bound of the values of y 
for x between 𝑥0 − 𝛿 and 𝑥0 + 𝛿 is also g. Point 𝑥0 either lies inside a...b, or on its 
border (𝑥0= a, or 𝑥0= b). 

In the first case, f(𝑥0) is a maximum. Indeed, f(𝑥0) must be equal to g: for f(x) - 
f(𝑥0) can be made as small as we wish, by choosing an adequately small |x-𝑥0|; on the 
other hand, since x lies between 𝑥0 − 𝛿 and 𝑥0 + 𝛿, f(x) can be chosen arbitrarily 
close to g; hence f(𝑥0)= g. (If we had f(𝑥0) = g+h, we would have f(x) – f(𝑥0) = f(x) – 
g – h, and f(x) could not come arbitrarily close to g if h was not 0). 

If 𝑥0 coincided with either a or b, then we could only claim that f(a) (resp. f(b) is 
a maximum if f(x) was continuously at a (resp. b) as well. (Weierstrass, 1988, p.91-
92) 

DIDACTICAL PERSPECTIVES 
Epistemological summary 
First, let us attempt to summarize the pretty intricate network of definitions, proof-
ideas (or proof-germs (Downs & Mamona-Downs, 2010)), proof-techniques, and 
proof-analyses displayed in this sample of texts. What follows constitutes an 
epistemological narrative. 
At least two definitions of what it means for a real-valued function to “increase” can 
be found in the 19th-century: a point-wise and global definition which can be found in 
Lagrange; a definition that relies on an everywhere-valid local property, which can be 
found in Cauchy. If we stick to Cauchy’s definition, then the proof of the theorem 
about the relationship between the sign of f’ and the variations of f is pretty trivial. If 
we want to reach the Lagrange-style conclusion, then much more work is needed, 



  
since one has to start from an everywhere-valid local property (sign of f’) and reach a 
global conclusion.   
To reach that conclusion, we saw two very different proof-ideas, namely Lagrange’s 
and Bonnet’s. In the proof we studied, and in quite a few other parts of his work, 
Lagrange distanced himself from the formal manipulation of formulae (finite or 
infinite), and engaged in numerical proof: he relied on the correct numerical 
understanding of the notion of limit; on this basis, he cautiously built networks of 
inequalities; he finally endeavoured to ground his reasoning on the determination of 
upper bounds for the errors in a process of affine approximation. In the first half of 
the 19th century, many proofs of the most important theorems in function theory were 
written along this line. Distrust of this proof-scheme spread as mathematicians grew 
aware of the distinction between point-wise and uniform (continuity, convergence). 
They spread all the more slowly since the theorems were correct, the building blocks 
of the proofs showed a proper understanding of the notions at stake, and local 
counterexamples7

For the theorem on which we chose to focus, an alternative proof became available in 
the 1860s, which relied on a completely different proof-idea; unlike Lagrange’s 
proof, it did not rely on what the derivative of a function at a point is (a limit, which 
provides some local affine approximation), but on a property of the derivative (stated 
in the mean value theorem). Some elements of Bonnet’s proof were later seen as 
insufficiently grounded, in particular the existence of a minimum or a maximum; in 
the 1890s, mathematicians such as Jordan used Weierstrass’ analysis of the set-
theoretic properties of the real line to back up that weaker step in Bonnet’s proof. 

 were hard to find. As Darboux insightfully (but to no avail, as far 
as Hoüel was concerned) stressed, there were only two ways out of this predicament: 
either to change proof-germs, or to establish uniformity.  

Didactical issues, and topics to be discussed 
As to connections with current work on mathematical proof from a maths education 
research perspective, we would like to stress several features; we hope this will 
trigger discussion, possibly collaboration: 
* Instead of focusing on one proof, the (abridged) corpus we presented and the 
epistemological narrative we based upon it deal with a chain of proofs (or deductive 
chain) which has remained stable since the beginning of the 20th century. The strong 
deductive nature of the final chain, with it seemingly necessary conceptual 
connections, makes it difficult to even imagine how it could have emerged 
progressively. The corpus shows how this emergence is (1) a collective phenomenon 
(a point emphasized in (Balacheff, 1987, p.148)), (2) gradual. As to the second point, 
it turns out that the various stages do not make up a linear chain of rigorization steps, 
in which each tentative proof would be more sea-worthy than the previous one. 
Indeed, the stages are of a much more varied epistemological nature, and do not make 
                                           
7 Meaning: a counterexample to a step in a proof, not to the theorem itself. 



  
up one single line: really different proof ideas were at play; several forms of 
rigorization can be encountered, such as regressive analysis (finding conceptual 
grounds from which to derive something that was previously taken to be obvious or 
improvable), or conceptual distinction (between point-wise and uniform). From a 
teaching perspective, we feel the use of such corpuses in teacher-training could help 
change their image of maths (i.e. their view of the nature of mathematics). We should 
also discuss whether or not meta-level, epistemological, descriptive terms such as 
those we used8

* Here, the emphasis lies on the reading of proofs rather on the writing of proofs. 
Hence, this corpus and this narrative do not directly address central issues such as the 
distinction between argumentation and proof, or the question of what it takes to write 
a formal proof-text on the basis of a well-grounded conjecture or even a proof-idea. 
We focused on the analysis of proof-texts, in terms of rigour and conceptual content 
(i.e. concepts at play); an analysis carried out by mathematicians; an analysis which 
students could be asked to carry out

 should/could be used in teacher-training. 

9

* In the corpus we presented, we did not lay the emphasis on the use (or misuse, or 
lack of use) of quantifiers. It would have been possible; it would have been relevant. 
We focused on conceptual content rather than on deductive rigour, and claim it leads 
to fruitful questions.  For instance, we would like to know to what extent students are 
able to recognize/identify fundamental theorems or concepts, when they are stated in 
a slightly unusual form (think of Lagrange’s wording of the theorem, or his and 
Cauchy’s use of the notion of derivative-as-a-limit); we would like them to explore 
whether or not, and in what respect, Lagrange’s and Cauchy’s views on what 
“increasing function” means are equivalent. 

. 
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