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The fostering of deductive reasoning within mathematical argumentation processes is 
a demanding task for teachers. Deductive reasoning requires not only awareness of 
the epistemic value of statements but also of the structural components of 
mathematical knowledge. The relations between different statements become visible 
within mathematical arguments, and the truth of propositions is established 
independent from their current context. The aim of this paper is to show that this 
requires a certain language register, characterized by context-independency and 
precision, to which learners in school have different levels of access.  
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INTRODUCTION 
The introduction of reasoning and proof into the NCTM standards 2000 triggered a 
focus on argumentation and proving in the curriculum in many countries. As 
mathematical reasoning is closely connected to the exploration of connections 
between new statements and existing mathematical knowledge, it seems to be a 
promising way to promote learning. More reasoning in school thus appears to be a 
welcome development. Research on problem solving (Lubienski 2000, 2004) and 
modelling (Leufer and Sertl 2010) however pointed out disadvantages for children 
from lower socioeconomic backgrounds and linked these findings to Bernstein’s 
theory of different access to the language register required in education. Knipping 
(2012b) points out that so far, there has not been any research on the question 
whether similar effects can be observed for argumentation.   
Limited access to the language register required in school contexts can be seen as a 
possible explanation of the PISA 2000 results in Germany, which showed huge 
deficiencies in the performances both of students from a lower socioeconomic 
background and of children with migration background. In this paper I will first 
explore the nature of deductive reasoning and its possibilities for the learning of 
mathematics. Secondly, I will focus on the language required in educational contexts 
and the possible obstacles it holds for students from a lower socioeconomic 
background and learners for whom the language of education is not the mother 
tongue. After that, I will establish a connection between the characteristics of 
mathematical reasoning and the features of academic language. Finally, I will present 
my research approach that aims at facilitating the integrated learning of mathematical 
reasoning and the academic language register.  



  
ARGUMENTATION, PROOF AND DEDUCTIVE REASONING 
Much has been said about the “complex, productive and unavoidable” (Boero, 1999) 
relationship between argumentation and proof. Following Toulmin (1958), proof can 
be considered as a special form of argument. Toulmin sees arguments as steps from a 
datum or a set of data to a conclusion, justified by a warrant for which backing may 
be produced if necessary. Mathematical proofs follow the same structure, ideally 
relying on axioms or established mathematical knowledge as data, and using the rules 
of logical deduction in order to arrive at a conclusion. In mathematical practice 
however, Hanna and de Villiers (2012, p.3) state that “a proof is often a series of 
ideas and insights rather than a sequence of formal steps”. For academic 
mathematics, the scientific community has been negotiating the rules for proving for 
a long time, and mathematicians generally have an idea about which steps in a proof 
they may omit (Knipping 2012b).  
For school mathematics however, Knipping (2012b, p.4) points out that “there are no 
previously negotiated criteria for argumentation”. These criteria need to be agreed 
upon by the community in which argumentation takes place. School mathematics 
cannot take an axiomatic approach to proving, or assume that the students know 
which types of deduction are acceptable. The role of the social community is crucial 
for argumentation processes. I will follow Knipping’s definition, which takes the 
social community into account and defines argumentation as “a sequence of 
utterances in which a claim is put forward and reasons are brought forth with the aim 
to rationally support this claim” (Knipping 2003, p.34, my translation). This 
definition encompasses proof and deductive reasoning.  
As pointed out before, mathematical argumentation can be seen as a continuum, 
reaching from very informal arguments and inferences based solely on the authority 
of the speaker to strictly logical proof. These kinds of arguments differ significantly 
in the way in which they use deductive inferences. Not every argumentation in 
mathematics contains deductive reasoning. Aberdein (2012) sees mathematical 
argumentation as consisting of two parts. It is characterised by an underlying 
inferential structure, which follows strictly logical criteria, and an argumentation, 
which is the visible part of the argument. The argumentational part seeks to convince 
others that logical criteria have been obeyed and that the given inferences are valid. 
In order to account for this two-layered view on mathematical argumentation, 
Aberdein has suggested a categorization of arguments into different schemes. 
Arguments in which every step is a deductive transmission from the premises to a 
conclusion are characterized as A-scheme arguments, as the argumentational 
structure and the inferential structure are directly connected. Mathematical proof falls 
into this category, as justifications based on logical deduction are given for each step 
of the argument. If the connection to the inference structure is less explicit, but could 
theoretically be split up into a limited number of deductive steps, Aberdein classifies 
the argument as B-scheme. This type of argument is based on deductive reasoning; 
however, intermediate steps may be omitted or references to statements proven 



  
elsewhere may be included. In academic mathematics this is often the case in proofs 
presented in mathematics journals, where some steps are omitted and left for the 
qualified reader to complete. Deductive reasoning is a prerequisite for A- and B-
scheme arguments as it ties the logic of the inferential structure to the visible 
argumentation. The last category for arguments proposed by Aberdein is the C-
scheme. All arguments without direct or indirect reference to the inferential structure 
are contained in this category. Typical for this category are visual arguments and 
other informal argumentation techniques which make no use of deductive reasoning.  
Mathematical reasoning and learning mathematics 
As all of the presented sorts of arguments occur within mathematics as an academic 
discipline, school mathematics needs to face the question, which kinds of 
argumentation it wants the students to engage in. C-scheme arguments can be very 
helpful in conjecturing processes, as they lead to assumptions about possible 
hypotheses. In order to systematize new mathematical knowledge however, some 
connection to an inferential structure must be established. Arguments that are solely 
based on informal practice or intuition cannot show what the truth of statements and 
their relationships depend on. They do not explain why a statement is true. However, 
Hanna (2000), de Villiers (1990) and others have pointed out the importance of the 
explanatory potential offered by a proof based on deductive reasoning. The direct link 
to the inferential structure also simplifies the systematization of new knowledge into 
the existing internal mathematical knowledge structure.  
In recent years, there have been many attempts to make proving more accessible to 
students. As deductive reasoning is necessary for proving, much about its fostering 
can be learned from these approaches. Boero, Garuti, Lemut and Mariotti (1996) 
introduced the concept of cognitive unity between conjecturing and proving. This 
concept states that proving becomes easier if during the conjecturing phase, students 
discover arguments that they can later use in the proof. Suitable tasks must be chosen 
in order to enable the discovery of important arguments. Knipping (2012b) compares 
the restructuring of arguments found in the conjecturing phase into a deductive chain 
to a transition from Aberdein’s C-scheme to B- or A-scheme arguments.  
Another approach for dealing with proofs in school was developed by Hanna and 
Jahnke (2002). In this approach, the importance of hypotheses for proving is 
emphasized, and Freudenthal’s concept of local organisation plays a major role 
(Hanna and Jahnke 2002, p.3). At the beginning of a new exercise, the learners are 
engaged in measuring and experimentation, which leads to a speculation about 
possible hypotheses. When several hypotheses have been collected, the students are 
asked to create connections between them and put them into a structure, thereby 
establishing a local order. Jahnke (2009) emphasizes the importance of inferences for 
mathematics. With Aberdein’s scheme, the established structure between the 
hypotheses based on the newly created local order can be characterized as B-scheme 
or A-scheme arguments. Emphasis is not put on the validity of the hypotheses but on 



  
the certainty of the inferences. The learners work out a deductive chain that is valid 
as long as the hypotheses are true. 
The specification of starting conditions and the insight that statements are dependent 
on other statements are characteristics of mathematical reasoning, and especially of 
deductive reasoning. Reasoning which has its origins in an inferential structure 
requires awareness of the mathematical background of theorems. Having established 
the connection of a new statement to existing mathematical structures, further 
exploration becomes possible. Bikner-Ahsbahs et al. (2011) have pointed out the 
potential of mathematical reasoning for learning mathematics. Reid (2001) has 
described how deductive reasoning plays a role in the acceptance of explanations. 
Connections and links between new knowledge and existing knowledge are forged, 
and bridges between previously independent islands of knowledge are established by 
mathematical reasoning. Schoenfeld (1994, p.68) claims that “looking to perceive 
structure, seeing connections, capturing patterns symbolically, conjecturing and 
proving, and abstracting and generalizing” are fundamental to mathematics. All of the 
processes mentioned in the quote are also important in mathematical reasoning. Thus, 
promoting the ability to reason deductively seems to be a promising path in order to 
enable students to learn mathematics.  
Possible obstacles in the teaching of mathematical reasoning 
However, more deductive reasoning in schools may also trigger some unwelcome 
effects. Lubienski (2000) has pointed out that not all students benefitted equally from 
the greater emphasis that was put on problem solving in recent years. Her findings 
showed that while learning was fostered for both students from lower and students 
from higher socio-economic backgrounds, the open and context-embedded material 
increased the gap between the two groups. The group of students from a lower 
socioeconomic background was much slower in their progress and often felt insecure 
about the acceptability of their arguments. Many of the students uttered the wish for 
more support by the teacher. Furthermore, the arguments brought forth by these 
students were often directly linked to the context given in the task, without focussing 
on the intended mathematical background.  
For mathematical modelling, similar problems were observed by Leufer and Sertl 
(2010). The application of mathematics on realistic problem situations was supposed 
to increase motivation and bridge the gap between school and real life, especially for 
students from lower social classes. However, especially these students had problems 
in solving the given tasks.  
A possible explanation for these differences in achievement between students with 
higher and lower socioeconomic status given by Lubienski and by Leufer and Sertl is 
based on Bernstein’s sociology of education. According to Bernstein (2003), the 
social class of the speaker influences the language register he or she is capable of, 
and likely to be, using. Bernstein distinguishes between restricted and elaborated 
codes. The different codes are characterized by specific discourse forms and different 



  
conversation modes. Language of a restricted code takes place in situations of 
temporal and spatial proximity. The discourse can be classified as horizontal 
(Bernstein 1999), is dependent on the immediate context in which it is spoken and 
can, while coherent in one given context, be illogical across different contexts. 
Elaborated code, on the other hand, is characterized by its reference to objects that 
are not necessarily tangible. It makes use of vertical discourse, which is marked by 
context-independency, coherence, and the ability to abstract from concrete objects. 
Bernstein (2003, p.109) describes that, while restricted code appears in all social 
classes, children from are working class background are often limited to this type of 
language. In contrast to this, children from the middle and higher classes experience 
the usage of both restricted and elaborated code at home.  
The considerations of Bernstein explain general deficiencies of children from a lower 
socioeconomic background in school, as elaborated code usually is the required 
language register in the educational context. In order to see which kind of language is 
demanded in a certain situation, Knipping (2012a) describes Bernstein’s approach of 
necessary recognition and realisation rules. The usage of real-world contexts in 
mathematical tasks impedes the recognition of the expected vertical discourse. These 
problems of children from a lower socioeconomic background have not been 
analysed with a focus on argumentation yet. Mathematical reasoning requires many 
processes of abstraction and generalization. It can be expected that children with 
limited access to vertical discourse encounter problems.  
ELABORATED CODE AND SECOND LANGUAGE LEARNING 
Bernstein’s theory of linguistic codes is concerned with children from different 
socioeconomic backgrounds. Social class, however, is not the only factor for 
language learning and achievement in school.  
The results of PISA 2000 forced the German educational system into becoming 
aware of the fact that a successful participation in school is closely connected to the 
personal background of students. Both immigrant children and children with lower 
socioeconomic status turned out to achieve lower overall results. Heinze et al. (2011) 
present results from a follow-up investigation of children with migration background 
using the DEMAT testing material; it was shown that language proficiency in the 
German language has a higher influence on achievement in mathematics and 
cognitive performance in general than on reading skills.  
If the language used in the educational system is not the speaker’s mother tongue, 
special problems are encountered. In order to account for the specific challenges for 
second language learners, Cummins (2008) introduced the notions of BICS and 
CALP in order to distinguish between different levels of language. BICS stands for 
basic interpersonal communication skills, CALP means cognitive academic language 
proficiency. Duarte (2011, p.60) pointed to different results showing that the 
acquisition of BICS can be achieved within two years of being exposed to the new 
language, CALP abilities usually require at least five years.   



  
In general, academic language shows the characteristics Bernstein pointed out for 
vertical discourse, whereas everyday speech can be compared to horizontal discourse. 
Duarte (2011) has given a concise overview on the characteristics of academic 
language compared to those of everyday speech. The features of the different 
language levels are listed in Table 1. 
 

Academic language Everyday speech 

Orientation towards written language Oriented towards spoken language 

Abstract, symbolic Concrete, factual 

Context-disembedded Context-embedded 

Generalizing Specific 

Can be technical and domain-specific Unscientific, general 

Linguistically concise Linguistically diffuse 

Precise Imprecise 

Impersonal (uses personal pronouns) Personal (usually agents are explicit) 

High degree of cohesion Partially unstructured and loose 

High lexical density Low lexical density 

Table 1: Main differences between academic language and everyday speech (Duarte, 
2011, p. 71, adapted and shortened)  

In addition to the obstacles shown in table 1, which are true for the academic register 
in all languages, Duarte (2011, p.71) lists some features of German academic 
language. Among these are the use of sophisticated verbs instead of simple verbs 
with prefixes, adjectival and adverbial attributes, and nominalisations. Gogolin 
(2009) has introduced the term “Bildungssprache” to account for these special 
characteristics of German academic language. Referring to Habermas, she defines 
Bildungssprache as “the language register which enables to gain orientational 
knowledge by using the means of school education” (Gogolin 2011, p.108, my 
translation).  
Children with migration background in Germany often come from families with a 
low socioeconomic status and little education (Gogolin 2009, p.267). As shown 
before, this leads to further disadvantages in the familiarity with elaborated code 
before entering school. These obstacles are important in all subjects and must be 
taken into account by teachers.  
Language requirements for deductive reasoning 
A bigger emphasis on reasoning in the mathematics classroom must take into 
consideration possible language barriers. Children from all backgrounds are likely to 



  
understand language based on basic interpersonal communication skills. On the other 
hand it is visible in the definition of Bildungssprache by Gogolin given above that 
academic language abilities are needed in order to gain orientational knowledge in a 
new context. Thus, fostering CALP should be one aim of education in all subjects, 
also in mathematics. In addition to this demand, mathematical reasoning has some 
characteristic features that make academic language not only desirable but also 
necessary. 
Mathematical reasoning takes place abstracted from concrete situations. Processes of 
reasoning in mathematics establish a link between new knowledge and existing 
knowledge structures. These knowledge structures are internal and show hardly any 
connection to tangible objects. Furthermore, mathematical reasoning frequently 
makes use of generalizing techniques, especially in the inference rules used in 
deductions. Another feature of mathematical reasoning is the precise, coherent and 
concise form desired as the outcome of the reasoning process.  
All of the named features are also characteristics of the academic language register. 
From this I conclude that academic language can hardly be avoided in the teaching 
and learning of reasoning. The required language register can quickly become an 
obstacle. I am convinced, however, that the close relationship between mathematical 
reasoning and academic language also offers many learning opportunities.  
FIRST INSIGHTS INTO MY RESEARCH WORK 
In my research, I am working as a teacher-researcher in a project for children with a 
migration background whose mother tongue is not German. They come to university 
once a week to receive support in different subjects in groups of 4-6 learners at no 
charge. The students come into the project from different schools. From September 
2012 until the end of January 2013 I am teaching and researching in two groups of 
students, one group is in their 9th year in school and the other in their 11th year. There 
is an option to prolong the research period until July 2013.  
I am collecting data from three different sources. Videotaped interviews at the start of 
the project, before Christmas and towards the end, combined with a reasoning task, 
are used as control points for the students’ views on and abilities in deductive 
reasoning. In the first interview I found that in the mathematics classes of most of the 
students, hardly any reasoning takes place. For the development of material and in 
order to have a second opinion on the developments in the groups, there are weekly 
consultations with David Reid as an expert on reasoning, which are audiotaped. The 
third data source is the videotaped material from the lessons. In addition to all that, I 
keep a research diary in which I keep track of my experiences. The videotaped 
material will be evaluated at the end of the project, in order to retrace the individual 
development of mathematical reasoning.  
Material development within the project takes place on a weekly basis, constantly 
taking into consideration the consultations with David Reid and the immediate 
impressions from the previous lessons. I am developing language sensitive material 



  
that creates opportunities for mathematical reasoning. In task creation, I am inspired 
by the cognitive unity approach developed by Boero et al. (1996) as well as by the 
approach concerning the local organisation of hypotheses by Hanna and Jahnke 
(2002). In both groups I detected large gaps in the knowledge from previous school 
years. This led to the decision of not only focussing on topics from their current grade 
but also including topics that the children are supposed to have dealt with in the past.  
In the following, I will present some material on linear functions from my grade 9 
group. In the previous lesson the children had been working with laptops, developing 
some hypotheses on the influences of the chosen parameters on the slope and y-
intercept of linear through a game in Geogebra. In the next lesson I tried to deepen 
the understanding in this area in a paper task on which the students worked together. 
Once again, they were given two tasks with points on a coordinate grid; this time, 
however, the points in each grid belonged to just one function. (Fig. 1 and Fig. 2).   

    
Fig. 1  First task     Fig. 2  Second task  

Additionally, a table of values for each of the two functions was given. The students 
had to complete several sentences such as: “If the value for x increases by 1, …”, 
“The intersection point of graph and y-axis is…”, “If you put a 0 for x into the 
equation y=m·x+b, the equation simplifies into…”. These sentences make use of 
language from the academic register. When the students had come up with a 
suggestion for an equation on which they all agreed, they were allowed to check its 
correctness on Geogebra. 
After having discovered and discussed about the influence of the chosen parameters 
in linear functions, a third task was given, “Find a linear function which goes through 
the point (0|2) and is parallel to the function from task two”. The students engaged in 
a vivid discussion on the solution to this task. There was no agreement on a solution 
until one girl came up with the argument that m defines the steepness of the graph, 
and therefore it has to be the same in the two functions.  
Eight weeks into the project, a positive attitude towards reasoning and challenging 
the rationale of statements can be observed in both groups. The students differ highly 
in their language proficiency, especially among the students from grade 11. Further 
data and a deeper analyses are necessary to identify specific problem areas. This is 
one aim of the further analyses that will be conducted after the end of the project.    
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