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The paper’s aim is to discuss the concept of “width of a proof” put forward by 

Timothy Gowers. It explains what this concept means and attempts to show how it 

relates to other concepts discussed in the existing literature on proof and proving. It 

also explores how the concept of “width of a proof” might be used productively in 

the mathematics curriculum and how it might fit with the various perspectives on 

learning to prove.   
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INTRODUCTION 

The paper addresses parts of themes one and four of the call for papers, namely “The 

importance of explanation, justification, argumentation and proof and their 

relationships in mathematics and in mathematics education” and “The use, evolution, 

elaboration or integration of theoretical frames relevant for research argumentation 

and proof in an educational perspective”. Its aim is to discuss the concept of “width 

of a proof” put forward by Timothy Gowers (2007). 

Both mathematicians and mathematics teachers are well aware that “mathematical 

explanation” and “mathematical understanding” are elusive terms. Indeed, these 

concepts are recurring topics in both mathematics and mathematics education.  Even 

though the term “understanding” is not precisely defined, it is often invoked in the 

context of proof and proving. Most mathematicians and educators do share the view 

that a proof is most valuable when it leads to understanding (Balacheff, 2010; de 

Villiers, 2010; Hanna, 2000; Manin, 1998; Mejia-Ramos et al, 2012; Mariotti, 2006; 

Knipping, 2008; Thurston, 1994). For this reason, mathematicians see proofs less as 

correct syntactical derivations and more as conceptual entities, consisting of a logical 

sequence of related mathematical ideas, in which the specific technical derivation 

approach is secondary.  

But when the focus on proof is primarily conceptual, there arises a need for well-

defined criteria, apart from the well-known syntactical ones, by which the quality of 

a proof can be evaluated. In the absence of such well-defined criteria, value 

judgements are often made on the basis of properties with an aesthetic flavour that 

have no precise meaning, such as “comprehensible”, “ingenious”, “explanatory”, 

“elegant”, “deep”, “beautiful”, and “insightful”. Clearly, such properties go well 

beyond the logical correctness necessary to prove a theorem. But in both 

mathematical practice and mathematics education these quasi-aesthetic properties of 

proof, ill-defined as they may be, are extremely important, because they speak to the 



  

recognition by mathematicians and educators that proofs are “far more than 

certificates of truth” (Gowers, 2007, p. 37). 

Aesthetically pleasing proofs enjoy a privileged position for that reason alone, of 

course, but Gowers notes that: “…it is remarkable how important a well-developed 

aesthetic sensibility can be, for purely pragmatic reasons, in mathematical research” 

(p. 37). The pragmatic reasons include enhanced ease of communication among 

mathematicians, increased interest, and the very important feature of being 

memorable. Memorability takes us to the concept of “the width of a proof”.  

WHAT IS MEANT BY THE WIDTH OF A PROOF? 

In approaching this concept, it is helpful to consider first what drove the 

mathematician Timothy Gowers to define the quality of mathematical proof for 

which he coined the term “width”, and the weight he gives to the associated notion 

of “memorability”. Deploring the fact that there is no well-defined language for 

expressing value judgments about the desirable “quasi-aesthetic” properties of proof, 

such as the ones mentioned above, Gowers (2007) set out by trying to clarify what is 

really meant by the words already in use to describe the quality of a proof. His 

attempt to come up with “a good theory of informal mathematical evaluation” (p. 39) 

led him to suggest paying more attention to memory. More specifically, he found it 

valuable, in formulating a good “theory of mathematical evaluation”, to consider the 

way mathematicians employ memory in creating and in understanding proofs.  

Memorability 

In the field of education the terms “memory” and “memorizing” are unfortunately 

associated with the undesirable notion of rote learning, which by definition eschews 

both explanation and understanding. But for Gowers memory has an entirely 

different meaning; in his discourse the term is very strongly associated with 

explanation and understanding, and he sees it as a crucial tool for mathematical 

thinking. Gowers notes, first of all, that a memorable proof is “greatly preferable to 

an unmemorable one” (p. 39), and adds that “memorability does seem to be 

intimately related to other desirable properties of proof, such as elegance or 

explanatory power” (p. 40). This raises the interesting question of why some proofs 

are easier to remember than others, and what role is played in memorability by 

various other non-syntactical properties such as elegance and ingenuity.  

Unlike other properties so often cited, Gowers argues that the concept of “memory” 

is sufficiently precise to be easily investigated and eventually quantified. First, it is 

easy to determine whether one remembers how to prove a theorem or doesn’t. 

Second, it would be feasible for educators or psychologists to find out what features 

of proofs make them more memorable. Third, memory is clearly related to the 

background knowledge of the learner (or the mathematician). 



  

Gowers may have gone too far in stating that there is a “very close connection 

between memorizing a proof and understanding it” (p.40), as if that were firmly 

established. He states: 

The fact that memory and understanding are closely linked provides some encouragement 

for the idea that a study of memory could lie at the heart of an explication of the looser 

kind described earlier. It is not easy to say precisely what it means to understand a proof 

(as opposed, say, to being able to follow it line-by-line and see that every step is valid), 

but easier to say what it means to remember one. Although understanding a proof is not 

the same as being able to remember it easily, it may be that if we have a good theory of 

what makes a proof memorable, then this will shed enough light on what it is to 

understand it that the difference between the two will be relatively unimportant. (Gowers, 

2007, p.41.) 

The concept of memorability leads Gowers to suggest looking at width, a term 

borrowed from theoretical computer science, where it refers to the amount of storage 

space needed to run an algorithm. (Gowers draws a parallel between “keeping in 

mind” and “computer storage space”, in the belief that storage in computers is 

analogous to memory in humans.) Thus the “width of a proof” would be a measure of 

how many distinct pieces of information or “ideas” one has to keep in mind (to hold 

in your memory) in order to be able to construct or follow a proof, to understand it, 

and to remember it.  

Width  

It is important to make the distinction between the width of a proof and its length. 

Whereas the length of a proof refers to how many lines of argument are needed to 

prove a theorem, the width refers to the number of distinct ideas one has to keep in 

mind (or memorize) in achieving that goal. As mentioned above, for Gowers (2007) 

the term “memorable” is intimately connected with understanding and means “easy 

to memorize”. Thus it becomes important to try to determine which features of a 

proof might contribute to making it memorable, and in his opinion: 

Some proofs need quite a lot of direct memorization, while others generate themselves 

…if we think about what it is that makes memorable proofs memorable, then we may find 

precise properties that some proofs have and others lack. … if mathematicians come to 

understand better what makes proofs memorable, then they may be more inclined to write 

out memorable proofs, to the great benefit of mathematics (p. 43).  

Gowers suggests paying close attention to how mathematicians might memorize a 

piece of mathematics in general and a proof in particular. For this reason he goes on 

to expand on his notion of “memorability” by placing it in the context of mental 

arithmetic, discussing how one remembers sequences of numbers and how one might 

go about adding large numbers without writing anything down. 

It is sufficient here to mention familiar arithmetic operations in which the “width” of 

the calculation (that is, the number of pieces of information one must keep in one’s 



  

memory in order to perform a calculation) can be reduced by appropriate 

simplifications. For example, the mental multiplication of 47 by 52 could be greatly 

reduced in “width”, according to Gowers, as soon as it is perceived as the difference 

of two squares. One could represent the product 47 x 52 as the product of (50-3) by 

(50+3), minus 47, which yields (2500 – 9) - 47. The reduction in “width” occurs 

because this way of handling the operation means that one has to keep fewer digits in 

mind than when mentally performing the multiplication 47 x 52 using the customary 

algorithm. One has eliminated the need to remember multiple digits, at the cost of 

introducing a single new insightful idea, the concept of the difference of two squares. 

In Gowers’s terms, this new idea has transformed the original large-width operation 

into a lower-width one. 

Examples 

Gowers also illustrates his ideas by citing two examples that are more complex and 

go beyond the realm of numerical calculation, one being the proof of the existence of 

a prime factorization (a fundamental theorem of arithmetic) and the other being the 

proof that the square root of 2 is irrational. The latter is shown here.  

Proof that the square root of 2 is irrational  

There are several proofs of this theorem using different methods, such as proof by 

infinite descent, by contradiction, by unique factorization, and by the use of 

geometry. The proof by contradiction is appropriate for mathematics education, and 

in fact has often been discussed by mathematics educators in the context of the 

overall notion of proof by contradiction. The following is one version of the proof by 

contradiction.  

Assume that 2 is a rational number. This would mean that there are positive integers p 

and q with q≠0 such that p/q = 2. We may assume that the fraction p/q is in its lowest 

terms; it can be written 2 = ( 2- 2)/( 2-1).  

Then, substituting p/q= 2;  p/q=(2-p/q)/(p/q-1)=(2q-p)/(p-q) 

Because  p/q = 2, it lies between 1 and 2, we have q<p<2q,  

It follows that 2q-p< p  and  p-q<q 

We found a fraction equal to p/q but with smaller numerator and denominator. This is a 

contradiction, so the assumption that p/q is in lowest term ( 2 is rational) must be false. █ 

Gowers’ point is that this version of the proof contains a step (step 2) that seems to 

“spring from nowhere”, namely the choice to write p/q = 2 as the expression “p/q =  

(2- 2)/( 2-1)”. Clearly this expression is useful, but where does it come from? 

Clearly it would come from the memory of the trained mathematician. This is a case 

in which one has to have used one’s memory to store an idea for later application. 

But this proof is nevertheless of lower width than it would have been without this 



  

one ingenious idea, because of the greater number of calculations that would have 

been needed to complete it otherwise. 

Of course it would help the reader of the proof to clarify why someone thought of 

this idea, because a step in a proof should not appear as a deus ex machina. Leaving 

that aside, however, Gowers points out that this particular step is no more than “what 

mathematicians normally mean by an idea” (p. 48). Ideas, according to Gowers, are 

in fact an intrinsic property of proofs, side by side with the property of correct 

logical derivation.  

An example from geometry: Proof of Viviani's Theorem 

Viviani’s Theorem: For a point P inside an equilateral triangle ΔABC, the sum of the 

perpendiculars pa, pb,  and  pc from P to  the sides of the triangle is equal to the altitude h.  

Proof: The idea is to recall that the area of a triangle is half its base times its height. This 

result is then simply proved as follows:  

ΔABC = ΔPBC + ΔPCA + ΔPAB 

With s the side length, we have:  

½ sh = ½ spa + ½ spb +½ spc 

h = pa + pb +pc  █ 

This proof of Viviani’s theorem is also of low width, because it can be generated by 

using just one powerful idea (the area of a triangle).   

Back to width 

What then is the width of a proof? Gowers’ first try at a definition is: 

It is tempting to define the width of a proof …as the number of steps, or step-generating 

thoughts, that one has to hold in one’s head at any one time. … suppose that I want to 

convince somebody else … that a proof is valid, without writing anything down. It is 

sometimes possible to do this, but by no means always. What makes it possible when it 

is? Width is certainly important here. For example, some mathematics problems have the 

interesting property of being very hard, until one is given a hint that suddenly makes them 

very easy. The solution to such a problem, when fully written out, may be quite long, but 

if all one actually needs to remember, or to communicate to another person, is the hint, 

then one can have the sensation of grasping it all at once ( p.55). 

This restates the idea that the factor that determines the “width of a proof” is the 

number of distinct pieces of information, or ideas, needed to complete it. In Gowers’ 

view, the fewer such pieces, the easier it should be to follow a proof or to actively 

devise one. A proof of low width, with few pieces of information to carry in one’s 

head, would be superior to one of high width. Often it is a case of introducing a 

single new but very productive idea that makes it unnecessary to deal with a larger 

number of less interesting ones. 



  

That does not mean that a proof must be short, because the length of a proof is not 

identical with its width, as pointed out earlier. Whereas the length of a proof usually 

refers to the number of deductive steps required to complete it, the width of a proof 

refers to the number of distinct items, or distinct ideas, that must be kept in memory 

in order to read, learn and understand the proof.  

Reflections on Gowers’ notion of width 

Gowers’s notion of “width” does not seem to capture in a single measure the many 

non-syntactical properties of proof, such as “comprehensible”, “ingenious”, 

“explanatory”, “elegant”, “deep”, “beautiful”, and “insightful”. Discussion of this 

point is difficult because none of these terms are well defined, as Gowers points out. 

The main difficulty, however, seems to be that these terms are far from being 

synonyms or even overlapping. One could even argue that some of these properties 

of proof, if not opposites, are at least orthogonal to one another. Very concise proofs 

are often considered elegant or beautiful, for example, but they are also less likely to 

be comprehensible or explanatory. 

Thus, even if width does prove to be a useful and potentially measurable property of 

proof, it would not appear to be one that could serve in place of the less measureable 

non-syntactical properties that mathematicians have always found meaningful and 

useful. To which of these properties width is most correlated remains an interesting 

question. An elegant proof, for example, would presumably be considered of low 

width (and that would be seen as a positive thing). One can imagine, however, a 

proof designed expressly to be highly explanatory, in which the multiplicity of ideas 

brought to bear would make it of high width.  

The concept of width would also appear to suffer from a lack of clarity as to how 

different kinds of memorized information – digits, concepts, rules – are to be 

counted. In the above example of arithmetic multiplication, the point is made that 

mental use of the normal algorithm requires that many interim digits be kept in mind, 

implying that the procedure has a large width. The width can be reduced, as Gowers 

states, by using an ingenious procedure employing the difference of two squares. 

Now, it is true that in the ingenious procedure there are fewer digits to memorize, but 

on the other hand one has to have had in mind the notion of the difference of two 

squares. One could argue that the mental capacity to store such a relatively 

sophisticated mathematical notion is greater than that needed to store a few digits. 

Perhaps there is an opening to refine the idea of width by considering whether or not 

different types of information might be assigned different weights. 

Another consideration might be how long a piece of information has to be kept in 

mind. To take the example of the calculation just discussed, the concept of the 

difference of two squares must be kept in mind always, so it can be called upon 

whenever needed, in this calculation or others, while the memory devoted to interim 

digits can be released as soon as the calculation is finished. The management of 



  

computer storage has a strong focus on how long a piece of storage is required. The 

inspiration for the term “width” came from computer storage, so it might be refined 

by taking into account the dimension of time. 

In considering the concept of width, one is tempted by some examples to say that 

lower width is good, while others show the value of a richness of ideas, in which 

case a greater width is better. Be that as it may, mathematics educators already know 

that it is not enough for students, when they engage in proving, to have mastered the 

concepts and techniques required to construct valid sequences of logical steps. It is 

important for them to have a broad grasp of mathematics, so that they can draw upon 

a reservoir of important mathematical ideas, stored in their memory, and see how to 

apply them to the mathematical argument they are engaged in constructing.  

Because it is a psychological concept, it is not surprising that width is difficult to 

define. Gowers says as much when he states that a “… precise discussion of width as 

a psychological concept is quite difficult” (p. 51, italics in the source). 

An even more basic question that might be raised, however, is whether it is necessary 

to have quantifiable measures of non-syntactical properties. Mathematicians know an 

elegant proof or an ingenious proof when they see one, just as mathematics educators 

are quite capable of deciding which proofs are going to be more useful in conveying 

to their students important mathematical ideas and their connections.  

In commenting on the concept of width, one must keep in mind that Gowers sees his 

investigation as a work in progress. While conceding that the notion of “width of a 

proof” is not precise and certainly still lacks a formal definition, Gowers hopes that 

more work will lead him to come up with a definition “more precise than subjective-

sounding concepts such as ‘transparent’, or even ‘easily memorable’” (p. 57). 

ASSOCIATED MATHEMATICS EDUCATION RESEARCH  

A review of the current literature on proof and proving in mathematics education 

shows that the concept of the width of a proof is not discussed (understandably so 

since it is a novel one), but several research papers have dealt, as Gowers does, with 

the non-syntactical properties of proofs and their importance. 

Mejia-Ramos et al (2012), recognizing that different proofs of the same theorem 

improve mathematical comprehension to different degrees, sought to devise an 

assessment model that could be used to measure the impact of the proof judged more 

promising from the point of view of comprehension.  

They first reviewed the mathematics education research on the purposes of proof; 

and then the existing recommendations for proof that encourage comprehension, at 

various educational levels. Finally they interviewed nine university mathematics 

professors to determine what types of proof comprehension were most valued in 

university mathematics. Judging by their abstract, these researchers saw the 



  

importance to comprehension of the non-syntactical aspects of proof that impelled 

Gowers to look into the idea of the “width of a proof”.  

[…]in undergraduate mathematics a proof is not only understood in terms of the meaning, 

logical status, and logical chaining of its statements but also in terms of the proof’s high-

level ideas, its main components or modules, the methods it employs, and how it relates to 

specific examples. We illustrate how each of these types of understanding can be assessed 

in the context of a proof in number theory. (Mejia-Ramos et al, 2012, p. 3). 

Hanna and Barbeau (2009) investigated the properties intrinsic to certain proofs that 

allow them to convey to students methods and strategies for problem solving. They 

also looked at the extent to which certain types of proof might yield new insights that 

are somewhat easier to keep in memory. 

Closely related to the concept of width is that of a memorable idea in a proof, which 

Leron (1983) looked at from a unique perspective in his work on structured proofs. 

Structured proofs are those that are organized into components in such a way that 

students can see how each component supports the main thrust of the proof. As 

Leron saw it, the memorable idea was the entire proof structure, not a step within the 

proof.  

Leron and Zaslavski (2009) discuss the strengths and weaknesses of generic proofs. 

One of the strengths of generic proofs is that they “enable students to engage with 

the main ideas of the complete proof in an intuitive and familiar context, temporarily 

suspending the formidable issues of full generality, formalism and symbolism.” (p. 

56). Generic proofs contain identifiable (and thus potentially memorisable) main 

ideas. The discussion in Hemmi (2008) is also closely related to pedagogical 

properties of proofs and to the way in which students encounter transparency and 

benefit from it.  

In her paper “Key ideas: what are they and how can they help us understand how 

people view proof?” Raman (2003) characterizes people’s views of proof by 

bringing together two ideas about the production and evaluation of mathematical 

proof, making a distinction between an essentially public and an essentially private 

aspect of proof, and the notion of a key idea related to explanatory proofs. She 

concurs with Gowers that for mathematicians proof is essentially about key ideas.  

The vast research literature on proof and argumentation also contains many 

references to the valuable properties of proof that Gowers sought to capture with his 

idea of width. See the extensive surveys by Mariotti, (2006) and Durand-Guerrier et 

al., (2012); see also Pedemonte (2007). For example, Douek (2007) discusses the 

“reference corpus” that is used to back up an argument. This reference corpus might 

include visual arguments and experimental evidence, and might even depend on a 

given social context. Douek argues for non-linearity as a model of the mathematical 

thinking that takes place in the process of proving. This is where one sees a parallel 

between Douek’s view of argumentation and Gowers’ description of the quality of a 



  

proof, recalling that Gowers pointed out that proofs admit of “artificial” steps that 

look as if they “spring from nowhere” but turn out to be useful.  

Jahnke (2009) argues that it is possible to bridge between argumentation and 

mathematical proof through explicit discussions of the role of mathematical proof in 

the empirical sciences, and by allowing students to bring in factual arguments. He 

says that “giving reasons in everyday situations means frequently to mention only the 

fact from which some event depends without an explicit deduction” ( p. 141). 

Knipping (2008) speaks of a method for revealing structures of argumentation in the 

classroom and invokes the concepts of local and global arguments to analyze a proof, 

believing that mathematical logic alone cannot capture all the processes of proving. 

Local arguments can certainly qualify as “proof ideas” in Gowers’s sense.   

In sum, Gowers’ focus on memorability as a desirable property of a mathematical 

proof, and his introduction of the concept of width, bring a new dimension to the 

teaching of proof. There remains a need to investigate the relationship between 

“width of a proof” and memorability on the one hand, and on the other hand the 

many other important dimensions of proof and proving, such as mastery of 

mathematical concepts and techniques, grasp of proof structure, and knowledge of 

methods of proving. A deeper investigation of the concepts of “width of a proof” and 

memorability promises to lead to new ways of presenting and teaching proofs.  
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