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In this contribution, I discuss two episodes from a teaching experiment performed in 
lower secondary school (grade 7) aimed at introducing proof and using algebraic 
language as a proving tool. The teaching experiment was conceived within a 
theoretical framework presented in a PME Research Forum (Boero et al., 2010). 
That theoretical framework was further developed in order to improve the a- 
posteriori analysis and refinement of the classroom intervention. The aim of this 
paper is to show how the increased theoretical framework shed new light on the 
students’ processes and also helped the design of further activities. More specifically, 
the analysis suggested occasions for developing argumentation at the meta-level.  

INTRODUCTION 
In this contribution I present and discuss two episodes from a teaching experiment, 
performed in grade 7, aimed at introducing a “proving culture” in the classroom. The 
contribution is situated in the stream of research outlined in a PME Research Forum 
(Boero et al., 2010). From a theoretical point of view, the Research Forum proposed 
an integration between Toulmin’s model for argumentation and Habermas’ theory of 
rationality (see the “Background” section below). The Research Forum paper ended 
with a series of suggestions for further developments and implementations, which 
were the starting point for the teaching experiment that is the object of this 
contribution. In the meantime, the retrospective analysis of some teaching 
experiments performed in the past (see Morselli & Boero, 2011) suggested to 
integrate the theoretical framework presented in Boero et al. (2010) in order to better 
frame the modelling activity of the student when he/she moves from a problem 
situation (internal or external to mathematics) to its algebraic treatment. In this paper 
I show how the integrated framework can be used to analyse the processes carried out 
by the students, with a special attention to the dialectic between proof and algebra.  

BACKGROUND AND THEORETICAL FRAMEWORK 
According to Balacheff (1982), the teaching of proofs and theorems should have the 
double aim of making students understand what is a proof, and learn to produce it. De 
Villiers (1990) suggests that the teaching of proof should make students aware of the 
different functions that proof has in mathematical activity: verification/conviction, 
explanation, systematization, discovery, communication. Stylianides (2007) proposes 
the following definition of proof that can be applied in the context of a classroom 
community at a given time: 



  
“Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics: it uses statements accepted by the 
classroom community (set of accepted statements) that are true and available without 
further justification; it employs forms of reasoning (modes of argumentation) that are 
valid and known to, or within the conceptual reach of, the classroom community; an it is 
communicated with forms of expression (modes of argument representation) that are 
appropriate and known to, or within the conceptual reach of, the classroom community”. 
(Stylianides, 2007, p. 291). 

This definition brings to the fore that a smooth and meaningful approach to proof 
requires the students’ progressive acquisition of basic content knowledge, but also the 
ability to manage (from a logical and linguistic point of view) the reasoning steps and 
their enchaining (modes of argumentation) and the ability to communicate the 
arguments in an understandable way. This is in line with the idea, exposed by 
Morselli & Boero (2009), that learning proof is approaching a specific form of 
rationality. The authors proposed an adaptation of Habermas’ construct of rationality 
to the special case of proving, showing that the discursive practice of proving may be 
seen as made up of three interrelated components: 

“- an epistemic aspect, consisting in the conscious validation of statements according to 
shared premises and legitimate ways of reasoning (cf. the definition of “theorem” by 
Mariotti & al. (1997) as the system consisting of a statement, a proof, derived according 
to shared inference rules from axioms and other theorems, and a reference theory); 

- a teleological aspect, inherent in the problem solving character of proving, and the 
conscious choices to be made in order to obtain the aimed product; 

- a communicative aspect: the conscious adhering to rules that ensure both the possibility 
of communicating steps of reasoning, and the conformity of the products (proofs) to 
standards in a given mathematical culture”. (Morselli & Boero, 2009, p. 100) 

Boero et al. (2010) proposed the integration of the construct of rational behaviour, 
with Toulmin’s model of argumentation, thus creating a comprehensive frame that 
allows: 1) to better analyse students’ proving processes; 2) to plan and carry out 
innovative classroom interventions. As regards the analysis of students’ processes 
(1), the integrated model allows two levels of analysis: Toulmin’s model focuses on 
the single argumentation step, while Habermas’ construct allows to study each phase 
of the proving process, from the exploration to the final proof construction (thus 
shedding light on the legitimacy of reasoning steps, on the intentions behind each 
step, and on the communicational constraints). As regards classroom implementation 
(2), the integration suggests the importance of developing students’ awareness of the 
constraints inherent in the proving process. Indeed, within the integrated frame, two 
levels of argumentation are outlined: the meta-level, concerning the awareness of the 
constraints related to the three components of rational behaviour in proving, and the 
level concerning the proof content. Within the integrated frame, students’ 
enculturation into the culture of theorems is a long-term process where the teacher 



  
must create occasions for meta-level argumentations aimed at promoting students’ 
awareness of the epistemic, teleological and communicative requirements of proving.  
Crucial issues are: how to create occasions for meta-level argumentation and how to 
manage them in the proper way. Boero (2011) analysed a mathematical discussion at 
university level, showing that dealing at the same time with the content level and the 
meta-level is quite difficult, and suggesting some a-posteriori activities so as to create 
occasions for meta-level argumentation. In the present paper, I illustrate some 
occasions emerging from another teaching experiment, aimed at the approach to 
proof in arithmetic. Here the approach to proof is in a dialectical relationship with the 
introduction of algebraic language as a proving tool (i.e. the means to perform proof).  
Algebraic proof 
Boero (2001) describes algebraic treatment as a cycle: the starting situation (sem1) is 
put into formula (form1) by formalization. The first formula (form1) is transformed 
into another one (form2) that may give new information to the reader (thus 
performing an interpretation from form2 to sem2).  

 

Figure 1: The cycle of algebra (Boero, 2001) 

The fundamental cycle of formalization, transformation and interpretation is at the 
core of algebraic activity. In particular, algebraic proof is carried out by means of 
such cycles. When dealing with algebraic language as a proving tool, some crucial 
issues are: the choice of the formalism, that must be correct but also goal-oriented; 
the validity but also usefulness of the transformations; the correct and purposeful 
interpretation of algebraic expressions in a given context of use.  
Morselli & Boero (2011), adapted the three components of a rational behavior in 
proving to the use of algebraic language in proving. In their elaboration, epistemic 
rationality consists of two distinct requirements: 1) modeling requirements, inherent 
in the correctness of algebraic formalizations  and interpretation of algebraic 
expressions; 2) systemic requirements, inherent in the correctness of transformation 
(correct application of syntactic rules of transformation). Teleological rationality 
consists of the conscious choice and management of algebraic formalizations, 



  
transformations and interpretations that are useful to the aims of the activity. 
Communicative rationality consists of the adherence to the community norms 
concerning standard notations, but also criteria for easy reading and manipulation of 
algebraic expressions.  
The contribution of this paper relies in the integration of the fundamental cycle of 
Algebra with the construct of rationality (in the use of algebraic language in proving) 
in the analysis of students’ behaviours. 

RESEARCH PROBLEM  
This paper concerns the experimentation of a task sequence aimed at approaching 
proof and introducing algebra as a proving tool. The main research questions are: can 
the analytic tool of rational behaviour integrated with the fundamental cycle of 
algebra be exploited to perform more in-depth analyses and interpretations of 
students’ behaviours?  
Previous research pointed out the importance of creating occasions for argumentation 
at meta-level, so as to make students aware of the epistemic, teleological and 
communicative constraints of proof. More specifically, with an eye to the use of 
algebraic language as a proving tool, it is important to promote reflection at meta-
level on the nature of the actions to perform (formalization, transformation, 
interpretation). Thus, additional research questions are: are there occasions for meta-
level argumentation? If yes, what are the themes for such an argumentation?  

METHOD 
The context 
The teaching experiment is situated within the research project “Language and 
argumentation”, started in 2008, aimed at the design, experimentation, analysis and 
refinement of task sequences for the development of students’ “proving culture”. 
Within the  project, teachers and researchers share the same theoretical references and 
collaborate in the design activity, as well as in the analysis of the experimentation and 
the progressive refinement of the tasks.  
The task sequences are conceived with argumentation as a core activity. Two types of 
argumentation are fostered: argumentation at content level, as a part of the proving 
process, and argumentation at meta-level, as a means for fostering reflection on the 
practices of mathematical proof related to the components of rationality. To this aim, 
tasks encompass: formulation of conjectures; comparison between different 
conjectures; justification of conjectures; comparison between individual processes 
and between individual final products. Didactical methodologies such as group work 
and mathematical discussions (Bartolini Bussi, 1996) are widely used. The team also 
explored the importance of making students to analyse students’ written individual 
solutions, as it is advocated within the theoretical framework of the fields of 
experience didactics (Boero & Douek, 2008).  



  
The task  
The task sequence “Sum of consecutive numbers” was conceived for grade 7 
(students’ age: 13-14); it encompassed exploration, conjecturing and proving in 
arithmetic. The approach to proof is in a dialectical relationship with the introduction 
of algebraic language as a proving tool. The students were at their second experience 
within the project. They had already experienced the task sequence “Choose a 
number”. In that occasion, they had appreciated the power of algebraic language for 
representing generality and showing the structure of the problem (see Morselli & 
Boero, 2011).  
The task sequence was experimented in two classes, by two teachers involved into 
the project. The author, a researcher in mathematics education, attended all the class 
sessions, acting as a participant observer. This means that she observed the class 
sessions, could provide further explanations, if required, during the individual and 
group work and could intervene in the discussion that involved all the students. She 
realized video recordings of the mathematical discussions and collected all the 
individual and group productions provided by the students.  
The whole sequence lasted about 10 hours. A description of the whole task sequence, 
as well a comparison between the two classes, is beyond the scope of this 
contribution. Here we confine ourselves to the first 4 hours. The students were 
proposed a first task (“What can you tell about the sum of three consecutive 
numbers?”). We may note that in both classes, in line with previous experiences in 
arithmetic, the students interpreted the task as referring to the sum of three 
consecutive natural numbers. The fact of working with natural numbers was not 
discussed with the teacher. The students worked individually, shared their solutions 
in small groups and after compared all the group solutions within a mathematical 
discussion. In each class, the discussion was devoted to the comparison of the 
conjectures and justifications provided by the students. For the aim of the paper, I 
selected from each discussion the excerpt referring to the classroom discussion about 
how to justify the property by means of algebra. The description of each episode is 
followed by a first analysis. Afterwards, an overall discussion of the results is 
presented. 

TWO EPISODES FROM THE TEACHING EXPERIMENT 
Episode 1: Three proofs for the same property 
The students from the first class worked individually and produced different 
conjectures. Although the norms established in the classroom require that any answer 
should be justified, only one student accompanied his conjecture with a justification. 
Elio claimed that “the sum is a multiple of three”, performed three numerical 
examples (see figure 2 for the original production) and wrote down: “Moreover, if the 
third number gives a unit to the first number, we have three equal numbers”.  
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Figure 2: excerpt from Elio’s individual solution 

Elio’s justification is firstly illustrated by means of a numerical example (7,8,9; see in 
figure 2 the line over the numbers, which represents the idea of 9 giving a unit to 7). 
This is a proof by generic example (Balacheff, 1982), since the numerical example is 
not aimed at “checking that the conjecture holds”, rather to show “why the conjecture 
holds”. The final sentence, although introduced by “moreover”, is a justification in 
general terms. We may note that this proof by generic example has the function of 
explanation, not merely of conviction. This proof was shared by Elio to his group 
mates and, afterwards, presented to the whole class and discussed within a 
mathematical discussion. During the discussion, the observer and the teacher 
underlined that Elio’s justification is a real explanation of the reasons why the 
conjecture holds. The observer also underlined that Elio’s method shows that the 
property does not hold if the numbers are not consecutive, thus pointing to the 
function of explanation. 

1 Observer: and in this way you understand why this is a property that not always 
holds. Some of you maybe tried to sum up three non-consecutive numbers. It is 
not sure that we still have this [the divisibility by 3], isn’t it? This explains why we 
need three consecutive numbers to have it.  

2 Elio: if we tried, here, instead of 503, with 504, I would get 503. I take away 1 
[from 504] and I get 503, not 502.  

3 Teacher: and you don’t have anymore three equal numbers. The nice thing, using 
three consecutive numbers, is that if I take 1 away from the biggest number and I 
move it to the smallest number, I get three equal numbers. That why I always get 
three times the intermediate number, exactly because there is that “moving”. [they 
go on doing some numerical examples and applying the “taking away” strategy] 

Elio’s individual solution contains also an algebraic proof: 
a+a+1+a+2 could also be a+a+a+1+2 

thanks to the commutative property it would be a*3+1+2 

a*3+3. 

During the discussion, Elio explained his choice of providing also an algebraic proof: 
“But maybe they [numeric examples] did not work on great numbers and I could not 
do an example on all numbers”. We may observe that Elio was not completely 
satisfied with is proof by generic example, probably influenced by the common idea 
that “examples don’t prove”. Actually, this proof by generic example was already 
acceptable. We also observe that when passing from generic example to algebraic 
proof, Elio did not perform a translation in algebraic language of the same type of 



  
proof, rather he carried out a different proof. This fact was pointed out during the 
mathematical discussion. Elio, with the help of the teacher, created at the blackboard 
the algebraic version of his proof by generic example: 

a+a+1+a+2=a+1 + a+1+ a+1=3(a+1) 
In terms of cycle of algebra, the two algebraic proofs (the first one, carried out by 
Elio individually, and the second one, carried out during the discussion) may be 
modelled as it follows: 
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Figure 3. Elio’s individual proof and the proof carried out during the discussion 

Both proofs are carried out properly and each action (formalization, transformation 
and interpretation) involves some aspects of rationality: formalization is correct 
(modelling requirements of epistemic rationality), and useful, since it allows the 
subsequent treatment of the algebraic expression (teleological rationality). All the 
transformations are performed correctly (systemic requirements of epistemic 
rationality) and in a goal-oriented way, so as to obtain the divisibility by 3 
(teleological rationality). In the second algebraic proof the strategy of “taking away” 
1 is guided by the goal of getting three times the same number. Thus, transformation 
is even more goal-oriented (tel. rationality). Finally, in both cases interpretation is 
correct (systemic requirements of epistemic rationality), since the final algebraic 
expressions (3a+3 and 3(a+1) respectively) are read in terms of “divisibility by 3”. In 
the first proof, 3a+3 could be more developed so as to make more evident the 
divisibility by 3. In the second proof the divisibility by 3 is evident and one could 
also note that the result is three times the intermediate number (epistemic rationality). 
The analysis in terms of cycle of algebra and construct of rationality reveals some 
differences between the two proofs: the first one is mainly syntactical and could be 
carried out without having in mind the property to prove; on the contrary, the second 
one can be performed only under the guide of a strong anticipation (one must already 
have the goal of getting three times the same number); the second algebraic proof 
seems to be possible only in continuity with the argumentation in natural language 
and numerical examples (proof by generic example). Both proofs have an educational 



  
value and offer occasions for argumentation at meta-level. Indeed, the second proof is 
a telling example of proof as explanation, the first one may also convey the idea of 
algebraic proof as a means for discovery. Actually, also in second proof there is a 
discovery part, because also divisibility by the intermediate number turns to be 
evident. The second proof also highlights the importance of reflection on numbers. 
The analysis suggests that it would be important to promote an a posteriori 
comparison between them, thus fostering a meta-level argumentation on the way of 
carrying out algebraic proof (crucial role of transformation), and also on the value of 
algebraic proof (not only conviction, but also explanation and discovery). 
Episode 2: struggling towards an algebraic proof 
The same task was proposed in another class. One student (Edel) conjectured that 
“the result is a multiple of 3” and accompanied the conjecture by a first justification 
in natural language (“because the summed numbers are three”) and by a symbolic 
expression (see figure 4). From the mathematical discussion, we know that Edel’s 
intention was that of providing an algebraic proof for the property. 
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Figure 4. Excerpt from Edel’s solution 

In terms of cycle of algebra, Edel’s attempt may be modelled in this way: 

 
Figure 5: Edel’s attempt 
The cycle of algebra is not working in the proper way: formalization is not correct 
(since n+n+n is not a correct representation of three consecutive numbers) and form2 
(n/3) is obtained by an (uncorrect) formalization of the conjectured property 
“divisibility by 3” (sem2), rather than from a transformation of form1. From the point 
of view of rationality, we note lacks in the modelling requirements of epistemic 



  
rationality. Anyway, we suggest that the formalization of n/3 lacks in terms of 
epistemic rationality, but is rational from the teleological point of view: Edel wants to 
translate in letters what she already discovered, that is the divisibility by 3. We may 
say that the missing issue is exactly the transformational power of algebra. What 
makes algebra a powerful proving tool is the possibility of passing from the starting 
situation to the conclusions by means of transformation. This awareness (at meta-
level) is completely absent in Edel’s solution. Edel’s activity has a teleological 
rationality, but according to her own goal: translating into letters. This is linked to her 
“ritual” conception of algebra as a proving tool: it seems that, for her, the algebraic 
proof is just a symbolic translation of what is already known. 
Previous analysis suggests the necessity of a reflection on how algebraic language 
works as a proving tool (teleological aspects). We point out that there is a rationality 
in the choice of using algebraic language as a proving tool, and a rationality in 
performing the algebraic proof. Awareness of the teleological aspects referring to the 
use of algebraic language as a proving tool (it is a useful proving tool because it 
allows to obtain the proof by means of transformation of symbolic expressions) has 
direct consequences on the awareness of the teleological aspects referring to algebraic 
activity (formalization and transformation must be goal-oriented).  

CONCLUSIONS AND FURTHER DEVELOPMENTS 
We described and analysed two episodes from a teaching experiment aimed at 
introducing algebra as a proving tool.  
The new integrated framework allowed us to put the requirements of epistemic and 
teleological rationality in a dynamic perspective. This brought to the fore that, when 
proving by means of algebraic language, the student must be able to combine the 
adherence to syntactical rules on one side, and the goal-oriented management of the 
processes of formalization, transformation and interpretation, on the other.  
In this way, the integrated framework allowed us to understand better the students’ 
processes (in particular, as concerns the nature of some of their difficulties) and to 
detect some occasions for argumentation at meta-level, that is occasions in which 
students can be asked to reflect on some aspects/components of the complex process 
they are involved in.  
Important issues, to be treated at meta-level, concern: the role and value of numerical 
examples and the legitimacy of proof by generic example and proof in natural 
language; the crucial role of transformation, and the consequent importance of 
transformation-oriented formalizations; the dialectic between syntactic manipulation 
and more creative manipulation; and the possible links with the different functions of 
proof (from conviction, to explanation, to discovery). 
The aforementioned task and the subsequent mathematical discussions can only 
partially achieve the goal of improving awareness on all these points. Further 



  
developments concern the design and implementation of tasks aimed at provoking 
such occasions.  
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