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Use of historical and cultural perspectives in education supports the development of 
mathematical concepts which are thus not as usually based on logical relations. 
They allow embracing new individual contexts of experience as well as methods of 
science and humanities. The use of models of historical development and the need of 
understanding of phenomena that foster or block learning challenges teachers as 
well as learners. It will be shown at the hand of concrete and relevant examples how 
historically, culturally and socially inspired problems can encourage an alternative 
approach to well-known mathematical concepts and deepen understanding. 

INTRODUCTION  

The employment of historical examples can enrich mathematical teaching in various 
ways. From the viewpoint of a historian, problems of inadequate methodology and a 
lack of contextual understanding might easily occur when historical material is used 
in the classroom. In this paper we do not put stress on the professional handling of 
historical material. We would like rather to consider the use of historical material as 
a source of inspiration in educational design and as a diagnostic mean. 

In the first part we discuss different approaches to the employment of historical 
content at the hand of existing forms of presentation of historical material in 
teaching. Hereby we pay attention to the representation of the historical material and 
its potential to initiate in the class room a discussion of the socio-cultural aspects 
connected to mathematical topics. The second part will exemplify the relations of 
various models of historical development and will make related positions in learning 
theories explicit. This constitutes the basis for the conceptual understanding of 
historical aspects by means of mathematical awareness in the third part. Here we are 
guided by examples from mathematics textbooks and examples from the education of 
pre-service mathematics teachers for grammar school. 

FORMS OF EMPLOYMENT OF HISTORICAL CONTENTS IN TEACHING  

The use of historical material in educational design has a long tradition. For instance 
Walther Lietzmann gave in 1921 a lecture course on recreational mathematics at the 
University in Göttingen and emphasized the important role of social and cultural 
aspects as well as the potential of historical contexts for the design of mathematics 
instruction. He encouraged the publication of corresponding materials with direct use 
for teaching. Although Lietzmann gave in (Lietzmann 1922) extensive references, 
the discussion of the authenticity of the presentation of historical content (Fried 
2001) was not a predominant issue. In Lietzmann’s book impulses to reflect about 
mathematics and incentives to deal with mathematical problems are given by means 



 

 

 

of varied, witty and curious 
comments. In contrast to the 
approach of a historian, where 
the existence and under-
standing of later mathematics 
is assumed, and is even part 
of the background, 
Lietzmann’s approach does 
not involve an understanding 
of modern mathematics. Historical contents and examples are used to make other 
points of view accessible to the reader, to free her from thinking routines by the use 
of metaphors, unexpected representations, and confrontations in order to enhance a 
deeper understanding and ludic handling of mathematical objects. 

There are various models of historically oriented mathematics teaching developed by 
historically interested mathematics educators (see Fauvel & Van Maanen 2000, 
Jankvist 2009), however, for Lietzmann history of mathematics is a source of 
inspiration for storytelling. In most current mathematics textbooks we can find some 
historical content. The presentation forms range from historical anecdotes to excerpts 
from historical documents (Kronfellner in (Kronfellner 1998) gives an overview of 
commonly used forms of historical content in the classroom). These materials are 
usually designed as insets or appendices that fit in the textbook design. They are 
additions to the canonical representations in the given textbook. The related 
omissions and circumlocutions thus easily lead to erroneous ideas about the 
historical development of mathematical ideas. In developing a socio-cultural context 
of the historical material the teacher should be aware of adjustments that have 
possibly been made. 

Many textbook examples of historical inserts in mathematics textbooks show the 
effort to bring authenticity with learning and reading habits in line. The language and 
symbolism used correspond only to a small extent with those in the original 
historical sources. The presentations often build on the student’s presumed skills and 
routines. The student is more likely to reproduce logical steps in the modern style 
than that she is stimulated to think in the framework of the historical context.  

In the design of learning environments based on historical sources the deliberate 
inclusion of national diversity in language and culture that can be found in the 
classroom can often be rewarding. An example would be the inclusion of original 
texts. Another practical link between the mathematical content and Islamic culture is 
shown in (Moyon 2011), by attributing geometric problems of area decomposition to 
inheritance rules in the form of rules for splitting acreage. 

Admittedly, a playful handling of historical events, oriented at imagination, transfer 
and variation is in danger of losing its historical authenticity but it can stimulate a 
much broader mathematical activity. Everyday knowledge and intuitive ideas can 

 

Figure 1: Dynamics of the development of 
mathematical concepts. 



 

 

 

           

Figure 2: A mistaken approximation of the length of the diagonal of a square. 
(left) A mistaken determination of the center of gravity of a segment as the limit 
of the centers of gravity of a family of triangles. (right) 

contribute amenable to different perspectives. When you want to understand 
historical hypotheses related to the constellations of celestial bodies (Jahnke and 
Wambach 2011), unwanted references to reality and modern general knowledge can 
interfere with the unbiased view. The latter interference can be avoided by an initial 
settlement of the problem in a fantasy world. The necessary alienation of everyday 
experience of space and time can be generated playfully by the transition into 
computer games, science fiction and fantasy-inspired worlds. The resulting 
relationships between socio-cultural and extracurricular mathematical approaches 
allow diverse developments. Versions of the transmission of mathematical problems 
in other worlds (in the literature there are many examples, e.g. Jules Verne, Kurd 
Laßwitz, Ian Stewart, Stanisław Lem, Terry Pratchett), and social relations in the 
world of mathematical objects (Isaac Asimov, Edwin A. Abbott) allow direct 
involvement of dramaturgic tools to deal with interaction of cultural and historical 
mathematical and scientific phenomena. Taking together these and many other 
examples, we can see a wide variety of possible inspiration from historical material 
in the mathematics classroom. 

HISTORICAL PERSPECTIVES ON MATHEMATICAL DEVELOPMENT 
AND CONCEPT DEVELOPMENT IN MATHEMATICS EDUCATION 

The references and school examples listed in the first section show that historical 
materials in textbooks usually occur as a reference to historical sources or as an 
illustration by means of a historical record of the mathematical concepts, objects, 
methods, or mathematicians just treated in the class. History here is strongly 
identified with the existence of historical sources, usually without paying attention to 
the historical source itself. This may partly be due to the fact that the use of historical 
sources for general goals of mathematics education, such as to experience 
mathematics as a living, evolving science or to create access to the cultural heritage, 
are difficult to interpret in such a general formulation. Thus the tool is turned easily 
into the goal and the historical work is reduced to mere reference to the existence of 
historical sources. The indeterminacy inherent in the historical approach can be 



 

 

 

ignored because there is the simple control feature availability of the historical 
source. The exciting and very challenging task of designing a learning environment 
based on the historical source cited in the textbook by introducing historical contexts 
rich with potential for socio-cultural, mathematical and scientific development lies in 
the hands of the teacher. How can, however, a short section of a historical text be 
turned into a mathematical development and what can actually be understood under 
mathematical development? 

In designing such learning environment the question of the underlying concept of a 
scientific theory, the choice of the general philosophy and of the appropriate 
developmental model plays a crucial role: is the historical progress based on 
endogenous and exogenous factors; is it based on the activities of some eminent 
personalities, or are there rather economic, political and social factors that contribute 
to the development of this subject? Is it necessary, for an appropriate understanding 
of the development of mathematics, to turn to methods such as source-analysis and 
source-interpretation, ethno-mathematical approaches or other perspectives?  

For a historian in the choice of the developmental model the scientific criteria are in 
the foreground. When contextualizing a historical fragment, the distinction between 
perspectives on history as a tool and as a goal and further differentiation of these 
categories as introduced by Jankvist (2009) seems natural and fruitful. In the 
development of learning environments by means of historical sources the 
entertaining potential can also play a role. Whiggish or present-centered 
representations (for this distinction and for a discussion of their unscientific nature 
see (Wilson et al 1988)) can still inspire genetic instruction or, as the first part 
exemplified, by means of relocating the actions, personalizing circumstances, and 
introducing other ways of alienation we can trigger a change of perspective leading 
to deeper understanding. The mathematics educator, not bound by the norms of 
scientific rigor of the historian, is open to other developmental models and many 
more possibilities of the use of historical sources in developing teaching 
environments. 

In a class, the concern is less on the development of mathematics as such as on the 
development of specific mathematical notions and concepts. 

For the development of mathematical concepts in the classroom an important role is 
played by the implicit phase in which a mathematical concept is not systematized, 
defined or referred to, which phase is for the historian hard to grasp and not often 
studied. As appropriate structures or regularities at this stage, however, often appear 
in the form of a problem solving method or a representation not really anchored 
within the context of the language of mathematics, the implicit phase can be helpful 
in instructional design in motivating a definition or in helping to formulate a problem 
aimed at introducing a concept.  

From a historical perspective, there are helpful approaches to extend intension-
extension of the conceptual dynamics, such as in Hans Wußings model by ostension 



 

 

 

(Scholz 2010). The presentation of the development of Euler’s formula, as Imre 
Lakatos in (Lakatos 1976) has reconstructed it, is oriented before all on the 
development of mathematics as a language. This developmental model may be 
whiggish for a historian. However, it makes important issues of epistemological 
debates of the last century accessible to a class discussion and it makes tangible the 
otherwise hardly conveyable idea that even the meanings of mathematical concepts 
are negotiated. For the long-term conceptual development in the classroom it is 
worth to think about what historical or other socio-cultural developmental models 
reflect the dynamics described in Figure 1. Even for local ordering and linking of 
concepts in school mathematics it is useful to deal with regularities in the 
development of mathematical language and with regularities in the development and 
formalization of mathematical methods from a historical perspective (Kvasz 2008). 

DESIGNING LEARNING ENVIRONMENTS BY THE AID OF HISTORICAL 
PERSPECTIVES AND MATHEMATICAL AWARENESS 

The development of mathematical concepts in the classroom is based on omissions, 
substitutions, rearrangement distortions, misrepresentations and other customizations 
transformations of relevant historical processes. On the other hand, there is not the 
one historical process of a concepts development but many aspects and perspectives 
under which one can see development as already discussed in the previous chapter. 

The following example (Figure 3) shows that historical jackets of mathematical 
problems do not necessarily initiate a change in routine approaches or standard 
solutions. In teacher training seminars the solutions students had for this text book 
problem were hardly related to elementary or historical approaches.  

These solutions, with only minor variations occurred in multiple (parallel) seminars 

Approximation of π 

The determination of the number π 

was in the history of mathematics 

an important task. Various 

processes have been developed. 

One method is to approximate a 

semicircular arc of radius 1 by a line 

of equal chords. 

a) Calculate π for approximately 

three equal sections. Evaluate the 

results. 

b) Develop a process that allows you 

to find a better approximation of π. 

 

Figure 3: Example of an exercise in historical jacket. 



 

 

 

on mathematics education. The tasks were part of a seminar presentation prepared by 
students on real numbers. The student's answer was to express half the length of the 
edges of half a regular n-gon by the sine of the angle π/n. They expressed their 
calculation using the calculator and multiplied this length by n/2 also with a 
calculator. The presentation of the solution consisted of giving symbolic expressions. 
The irrationality of the terms of the sequence, which approximate π was not noticed 
because the computer automatically rounded. Reflections on the convergence of the 
sequence and the transition from geometric objects (lines) to arithmetic sequences, 
i.e. sequences of numbers were not made. 

Despite the historical jacket and the instruction for a direct calculation, the students 
calculated the solution with calculator using the sine function even for half a 
hexagon – although the three equilateral triangles give the approximation of π by 3 
accurately. If you want to combine the cognitive process with the historical one, the 
reason for the superficial solution can be seen as a lack of experimental and intuitive 
awareness (see Kaenders and Kvasz 2011). The easy change between the geometric 
and arithmetic representation was based less likely to automation or a deeper 
understanding of the limit, but on the lack of experience with pathologies. The latter 
historically led to the necessity of the precise formulation of the limit concept. The 
two examples in Figure 2 (Lietzmann 1949) above do not represent this historical 
development of a precise formulation of a geometric limit. However, they show that 
they are necessary and can therefore lead to doubts about the solution and give rise to 
rethink the solution. 

Simplifications of the long historical development of the concept of limit in the 
classroom are of course essential. Omission of pathologies in this example could be 
seen in relation to the historical development as an aggravating, trivializing 
simplification rather than a support to conceptual understanding. 

The next example relates to a change in the usual representation of the solution of 
systems of equations. Given a system of linear equations with two equations and two 
unknowns, such as:        2 x + 2 y = 3 

-5 x + 2 y = 2. 

The approach proposed by the math textbook begins with the algebraic solution of 
the system: by equivalent transformations, the two equations can be converted into 
two equations, from which the solution x = 1/7, y = 19/14 can directly be read of. 
The corresponding geometrical solution process is started with the visualization of a 
given system of equations. Here, the linear equations can be brought into a form 
from which the transition equation ↔ geometric object is routine operation.  



 

 

 

 

 

Figure 4: Visualizing of 
equivalent systems of 
equations: 

 2 x + 2 y = 3 ⇔  x = 1/7 

-5 x + 2 y = 2    y = 19/14 

The lower situation does 
not exist in the language 
of school books.  

Since this has been trained in the context of drawing 
graphs of linear functions, it is a common textbook 
exercise to find the equation of the form y = mx + b, 
when the line in a coordinate system is graphically 
given. Just examples of the form x = b cannot be 
selected. In the next step, the transition between the 
expression y = mx + b, and the function graph is 
automatized. The visualization of the algebraic 
method or the "geometric solving" of the system of 
equations is now to determine the two function 
expressions corresponding to the initial equations, to 
draw the graph and read of the coordinates of their 
intersection. 

The use of the concepts linear function, with slope and 
intercept, the ability to draw straight lines and the 
associated determination of the intersection of two 
graphs of functions by reading of the value of a 
function at a point are required as appropriate skills. 
The concept of equivalence transformations – in this 
case to determine the nicest representatives x = x0, y = 
y0 from the set of all pairs of linear equations with the 
solution set {(x0, y0)} is not evident in the described 
approach: in the geometric representation of the 
equivalent transformations in each step the two lines 
preserve the intersection of the lines. Since the straight 
line x = x0 is not common in the understanding of 
function graphs, the geometric representation of the algebraic solution method is 
reduced to the visualization of the given lines, and reading of the intersection. The 
described way of visualizing the equations, graphs is probably chosen also because 
the understanding of analytical geometry of curves in the plane, especially of lines is 
not developed.  

The concept illustrated in Figure 4 of equivalent transformations and conservation 
laws, which is essential for the solving of systems of algebraic equation of higher 
order, and appropriate geometric representations by hyperplanes cannot be 
generalized by the transition to function graphs and values of a function at a point. 

The language used in the example shows above all a lack of contextual awareness. 
Instead of a change of representation a visualization of an equation is performed.  
From this we can conclude a lack of logical awareness, too, i.e. the role of systems of 
equations in an adequate development of theory is ignored. When we orient 
ourselves in the historical process, then the later and in a different context developed 
representation of functions as graphs of functions in Cartesian coordinate systems is 
rather misleading here – the Cartesian coordinates go back to René Descartes (1637) 



 

 

 

and the concept of a coordinate change to Christiaan Huygens (1656). One could 
denote the misplaced use and the transfer of concepts that are developed in other 
contexts as ahistorical implant. 

Another example deals with the currently conventional introduction of integral 
calculus, where three different aspects of the integral are introduced simultaneously: 

• Integral as oriented area, 

• Integration as anti-derivative, 

• Integration as a way to determine a function from a given function of change. 

One aim of this introduction is the motivation and direct introduction of the 
fundamental theorem of differential and integral calculus. To allow a direct 
connection between calculation of area and the determination of a function from the 
function of change, the change function is replaced by a step function, and thus the 
oriented area under the curve is replaced by the area of rectangles. The original 
functions are monotone, the determination of the step function is carried out 
graphically by estimating the areas of respective triangles. The replacement of the 
function by a step function aims at simplicity of calculation, but does not fit into the 
framework of the developed mathematical language of calculus: The geometric 
transition from secant to tangent with slope or the notion of actual speed would 
suggest an approximation with piecewise linear (rather than piecewise constant) 
functions. A historical insert of the parabolic segment method of Archimedes would 
show that it is a technically challenging problem and so, it could motivate the need 
for the later introduced Riemann sums. 

The language used shows experimental and intuitive awareness. Upon further 
conceptual and technical development of the concept of the integral taken 
simplifications can nevertheless lead to motivation and understanding of issues and 
the development of logical and theoretical awareness counteract. The summary 
described the technically difficult problem of the definition of the Riemann integral, 
and of conceptual understanding of the relationship between differential and integral 
calculus will not do justice to the complexity of the task, so you might call the 
representation as a caring shortening.  

A well-known transformation of historical contexts is what Freudenthal formulated 
as a criticism to the New Math movement (anti-didactic) inversion, which even 
today often determines the representation of higher mathematics at the University: 

“… the final result of the developmental process is chosen as the starting point for the 
logical structure in order to finish deductively at the start of the development. This 
genetic-logical inversion expresses itself as a didactical – or rather antididactical – 
inversion.”                Hans Freudenthal, 1991, Chapter 11, S. 305. 

In this kind of concept development the focus is on the long-term development of 
logical and theoretical awareness. The inclusion of an implicit history of the 



 

 

 

development of a concept and the ostension of a notion would lead to a more 
balanced mathematical awareness that also includes intuitive awareness. 

And finally, we introduce the well-known parable of Achilles and the tortoise by 
Zeno of Elea (495 - 430 BC.) Still today it is treated in many math textbooks. 
Unfortunately the Zenon paradox causes rarely the expected confusion or 
amazement. That may be partly due to the role of the problem as an application to the 
convergence of geometric series, which might inhibit a direct confrontation with the 
verbal formulation of the paradox. 

It was interesting to observe that the arguments in the teaching seminar consisted in 
the verbal recapitulation of the steps. However, to find own formulations and phrases 
related to the initial formulation of the Zenon paradox were a problem to our teacher-
students. Paradoxes force a change of perspective, re-orientation and provoke 
cognitive conflicts. One way to achieve this would be by the following possible 
question of Thomson (1954): Suppose a referee actuated whenever Achilles catches 
up to the new position of the turtle, the switch on a lamp. If the lamp is switched on 
or off when Achilles overtakes the tortoise? Also indirectly present ideas, such as the 
overall presence and familiarity with real numbers and their completeness, separate 
the students from the original and the paradoxical phenomena. The neglect of such 
indirectly involved factors when considering historical episodes can be called 
cultural alienation.  

For the analysis of the concept development of the textbook examples, it was helpful 
to further investigate, identify and name the changes made to the historical 
development of concepts (e.g., reductions, simplifications, omissions, ...). To draw 
attention to several emerging problems in the integration of historical content, we 
have introduced these following terms: (ahistorical) implant, (caring) abridging, 
(trivializing) simplification, (anti-didactic) inversion and (cultural) alienation. 
For the previous investigation of handling and development of concepts in teaching 
at the hand of concrete textbook examples and the description of possible problems 
of precise formulation, of conceptualization and transfer the perspective of 
mathematical awareness was useful. Based on an analysis of the mathematical 
language, we examined two aspects: First, what qualities of mathematical awareness 
do not occur in the language and symbolism and second, by which evolution of the 
subject could these qualities of mathematical awareness be developed. 
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