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In this paper we aim to address the potential ehpatational environments offering
integrated geometrical and algebraic representasidor the teaching and learning
of functions. We follow a ‘double analysis’ methiodanalyse learning situations of
an experiment that took place in the French contiesdugh the lens of the original
research tradition (Theory of Didactical Situatignsand an ‘alien’ one
(Constructionism). The analysis indicates that thethod enhances our efficiency to
capture aspects of research traditions which inflee2 knowledge concerning the
nature of learning situations for functions withngputers.

INTRODUCTION

The notion of function occupies a central role irwale range of mathematical
topics, but engaging students in functional thigkia known as a demanding task.
We note issues identified by research in relation students’ difficulties in
understanding function as covariation (Carlson let 2002) and dealing with
algebraic symbolism (e.g. distinguishing betweenlependent dependent and
variables, Thompson, 1994). The development of mesdes of representation
within specially designed technological tools hasneyated further interest as
regards their potential to deal with the above mo@ed difficulties. One of the
prime affordances of such tools is the multipldkéid representations designed with
the aim of providing some sort of combination of nagnic Geometry Systems
(DGS) and algebraic multirepresentation, possilsigluding Computer Algebra
Systems (CAS) (Mackrell, 2011). In this study we @&specially sensible to the
possibility offered by particular computational @enments to connect the notion of
function to dependencies and covariations betwesymetrical objects. Existing
research indicates that geometrical situations @SDcan be a fruitful context to
challenge students’ intuitions and ideas about gattan and functional dependency
come into play (Falcade et al., 2007). In additipngblem solving by way of
algebraic modeling of geometrical dependencies,clwhincludes also sensual
experience of these dependencies, can provideisfoastudents’ understanding of
the idea of function provided that students can kwdlexibly between the
geometrical and symbolic settings (Lagrange & Mir#910). Here we report
research aiming at shedding light on the potemtfatomputational environments
offering interconnected algebraic and geometriogpresentations to facilitate
students’ making of links between the qualitatixpexience of dependencies in the



geometrical context and the algebraic notion ofcfiom. Yet, it seems difficult to
really appreciate this potential, since it is nekte take into account the visions
provided by specific theoretical frameworks in teclogy enhanced mathematics,
and because of the fragmented character of thaseeWworks (Artigue, 2009). Here
we consider fragmentation as resulting from thestexice of different research
traditions. By research tradition, we do not mealy @ reference to a theoretical
framework, but also all the research practice bjalhtly with a framework:
reflection on a practice gives theoretical elemdatsa framework, and, in return,
practice, constituted by design, observation andrpmetation, is affected by the
framework. While compartmentalized research tradgi participate into
fragmentation, we assume that different reseasaatitions can be confronted and in
some sense articulated in order to address a plartiquestion, the potential of
computer environments for the teaching and learrohdunctions. Testing this
hypothesis is the general aim of this study.

Our choice here is to consider two research ti@usti both dealing with functions
and software, but different in many other aspda@tee involvesCasyopéga piece of
software that offers a dynamic geometry window emted to a symbolic
environment specifically designed to support staslemork on functions (Lagrange,
2005). Casyopée’s design and experimentations egtun a French context shaped
by didactical theoretical frameworks and epistegmal considerations. We focus
here on a framework preeminent in the French céontée Theory of Didactical
Situations (TDS) (Brousseau, 1997). The other rebedradition involves
Turtleworlds a piece of geometrical construction software Wimombines symbolic
notation (Logo) with dynamic manipulation of vardalvalues (Kynigos, 2004). The
design and the research on the use of Turtlewasldsspired by Constructionism
(Papert, 1980) and have been carried out in thelkSzentext. Constructionism and
TDS share a common focus on the design of learsitugtions through devices —
such as the “milieu”- providing affordances for draction and knowledge
construction. Our assumption is that divergent giedf the two traditions on the
contribution of milieu (e.g. the design and anaysf a session, the nature of the
constructed knowledge and its relation to the a@ficknowledge) provide a
complementary way to address the potential of cdatfmnal environments for the
teaching and learning of functions.

We drew on data from two concrete teaching experism@king place in France and
Greece respectively. We consider here the teackixgeriment designed and
implemented with Casyopée in the French contextceey out “double analysis” of

this experiment by way of TDS (a priori and a poste analyses) and

Constructionism in order to be able to tackle uraerintegrated” perspective (in
the sense of Prediger et al., 2008) the followinggtion: what new insight about the
potential of computer environments offering intdgdageometrical and algebraic
representations for the teaching and learning n€tion might be gained from the



double analysis of research studies carried outelsgarchers following different
research traditions in different national and distacontexts? Prior joint research
experience in cross-analysing teaching experimentis use of digital tools for
function (project ReMath [1]) revealed that misurst@nding rooted in divergent
views of functions and distinctive theoretical ot&tions could be addressed at two
levels: one is the economy of learning situati@asyhich we refer in this paper, and
the other is the process of conceptualisation nEtions by students. Thus, the links
between the issues involved in our research foeus are as follows: investigating
the potential of computational environments for tteaching and learning of
functions raises the issue of fragmentation of tbecal frameworks in the field of
technology enhanced mathematics; in order to egpsuch fragmentation at the
level of research traditions we adopt methods (sashdouble analysis) and
theoretical tools (such as the economy of learsitgations) that promote a deeper
focus on the design, implementation and analysiseathing experiments taking
place in different contexts.

THE ECONOMY OF LEARNING SITUATIONS

The notion of “economy” of learning situations help address the role of the many
different components intervening in the classroomgpession of knowledge:
students, teacher, but also various artefacts wtachbe material (e.g. blackboard,
disposition of the room) or not (e.g. tasks, rulggstems of notation, language).
According to Hoyles, Lagrange and Noss (2006, 4):30.. a learning situation has
an economy, that is a specific organization ofsriasm components, and technology
brings changes and specificities in this economy ...”

Theory of Didactical Situations (TDS)

Brousseau (1997) presents TDS as a way to moddiematical situations in a
learning context. In this model, a central notienthe “milieu”, a device which
justifies the use of knowledge objectively to soasgiven problem. Student’s acting
on the “milieu” provokes feedback calling for madifg or adjusting action.
Learning thus results from the student’s adaptationan antagonist “milieu”.
Teaching consists in organising these constramiskaeping optimal the conditions
of the interaction. TDS considers adidactical gitres designed in a way that the
desired outcome can be obtained only by applyirgkimowledge aimed at in the
situation. Researchers who refer to TDS in orderotosider interactions with digital
environments (e.g. Cerulli et al., 2008) proposedhiak of technological learning
environments as means to provide students with aganistic milieu, offering
tasks and feedbacks adequate for the knowledgtalet,sunder the condition that
situations of use are based on a suitable a @Enalysis.

Constructionism

Constructionism incorporates and builds upon cokfitism's connotation of
learning as "building knowledge structures” throygbgressive internalization of



actions, in a context where students are consgioaisjaged in constructing (or
de/re-constructing) physical and virtual modelssivfiations on the computer (e.g.
geometrical figures, simulations, animations): tleéion of construction refers both
to the ‘external’ product of students’ activity all as to the process by which
students come to develop more formal understandoigsleas and relationships
(Papert, 1980). The constructionist paradigm aitab special emphasis on students’
construction of meanings when using mathematicsotestruct their own models
during individual and collective 'bricolage’ withigdal artefacts, i.e. continual
reshaping of digital artefacts by the studentsrdeoto complete specific tasks.

CASYOPEE

Casyopée deals with various representations oftifume It provides a symbolic
window (Fig. 1, left) with tools to work with funicins in the three registers:
numeric, graphic and symbolic. Casyopée also iredumldynamic geometry window
(Fig. 2, right) linked to the symbolic window. Thgeometric window allows
defining independent magnitudes (implying free pgiand also dependant ones that
can be expressions involving distancegpordinates og-coordinates. Couples of
magnitudes that are in functional dependency carexported to the symbolic
window and define a function, likely to be treatedh all the available tools; this
can be done automatically, a functionality that vexpected to help students in
modeling dependencies, and that we will refer ttaatomatic modeling” below.

THE EXPERIMENT
The design of a session

The classroom session analysed in this paper veaffth of a series of sessions in
the ReMath project following three sessions by Wistudents get familiar with the
symbolic window, and one in which they were introeld to the dynamic geometry
window and to problems about areAsseries of tasks was conceived in which the
students had to make a choice of the independergbla as a key step to get an
algebraic model of a geometric dependency, in awsplve the following problem:
ABCD being a rectangle, what can be the positioa pbint M in order that the area
of the triangle BMC is one third of the area oftaewyle ABCD (Fig. 1, right)?

The sides of rectangle were parametrkD£fa and AB=b) in order to ensure
generality and a discussion on the fact that thetisa does not depend an The
solution is that the points satisfying the condhtlelong to one of two straight lines
parallel to BC) crossing AB) respectively in Mg and M1 such that

BMp=BM1=2AB/3=20b/3. It is possible to reach this solution geomethc but the
way the problem was proposed to students (in coatdigeometry) and their lack of
knowledge in geometry, oriented towards using &ton as a model of the variable
area. Five successive tasks were then proposée siudents: (1) Build the figure in
the dynamic geometry windowy being a free point in the plane (2) Create a



geometric calculation for the area ABCD, and movingM, conjecture positions of
M for which the area dBBMC is one third of the area of the rectangle (3) Gleoan
adequate independent variable to get a model ajebenetric function of the area of
BMC (4) Use Casyopée’s “automatic modeling” to getdkénition of a function in
the algebraic window (5) Use the algebraic windowgét algebraic solutions, and
then interpret these solutions in the dynamic gegnandow.

Instructions were given in order that the skl was parallel to thg axis, and the
side BC to the x axis. So in task 3 the students had the choicsetect for
independent variable some length involving the pMnor coordinates oM, but
only calculations depending univocally of theoordinate oM could be adequate
variables. It was expected that students would rebsthat moving horizontally the
point M does not change the area, and connect this oieerwvath the fact thakM

IS not an adequate independent variable. Afterea sslects an independent and a
dependent variable, Casyopée gives some feedbaskether it is possible to create
a function with these data. Together with the oksson of values of the variables
when moving pointM, this feedback was expected to create a milieyimgl
students understand the statute of variablesumetibn modeling a dependency.

A-priori analysis

For solving task 3, lengths involving cannot be chosen as independent variables
because they depend on the two coordinaigsan be an independent variable, but,

as mentioned above, a changexgfdoes not affect the value of the area of the

rectangle. The version of Casyopeée, still in degelent at that time, calculated a
formula involving yy, but after that refused to create a functigp.is a suitable

variable and the function calculated by Casyopég_islx—w . It was expected
that the identifierx for the independent variable could be confusingdimdents.
Casyopée offers other identifiers, but it was nkely that students will use this
feature. In the preceding session, the indepenaardgble was a length on the y axis,
and the teacher insisted that this length couldabelled x in the function. After
creating the function, the students could workha familiar symbolic window to
solve an equation. §M has been chosen as a variable, the equatiéﬂ%rs“’i':%ﬁ
but it can be different if the student choses asotfariable; for instancgs-yy is a
possible choice and the equation is tﬁéﬁ':%b. Another difficulty was expected
to emerge from the fact that Casyopée displayssttetion in the non-simplified

form YE-t) thus students had to interpret the two solutionsas two values ofiy

and to connect it to the geometric solution.
Data

The situation has been implemented in a 90-minetsien in two classes. Data
consisted of recordings of students’ work via soreapture software, observers’



field notes and students’ written assignment. Belempresent briefly the work of a
pair (Elina and Chloé).
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Fig. 1. Casyopée: The symbolic window and graphitab (left) and the dynamic
geometrical window and the geometric calculation ta (right).

The work of Elina and Chloé

In the first 20 minutes students built the rectangreated a geometric calculation
for the area of it and created a free pdihtnitially in the plane and after some
dialogue on a vertical sidéB]. By movingM on [AB] and evaluating numerically
this area (considering the numerical values ofaladb parameters) for about 10
minutes, the students found a solution withoutrtgknumerical information of the
software. They commented “This is good, this is tmed of [AB]” and wrote their
solution. After the teacher’s prompt that M is ie tplane, the students explored the
figure again looking for a single position Mg, but now on the perpendicular bisector
of [BC] without using values of the areaMBC calculated by Casyopée.

Then Elina proposed to create a function, but Chlaiméssed that an independent
variable had to be chosen first. Thus they retutoethe text of the given problem
and tried to identify the requested variables. Reathe message after trying the
constant measurgB, they movedM to this segment. TryinBM, Chloé commented:
“here we cannot create the variable”. After thiagyt triedxg-xv andys-yum, reading
the message of Casyopée (“the variable dependd, ahis defined over J-infinity,
+infinity[“) but not creating the variable. At 50mthe teacher told them to choose a
variable and they chosg;. Then they defined the functiohir > 4A5XEF< and got a
function r—axt in the symbolic window. After that, they definedet function
r,—2EXBC As indicated in the a priori analysis, Casyopeakwated a formula
involving yum, but after that, refused to create a function.6Amn, they had to
recreate the figure because of a technical probiednChloé realized that the triangle
area was constant and equal to one third of thtamgte area for every position lof

on a certain horizontal line. They commented “iaiways one third... then the
coordinate is what is important”. Surprisingly thagain chose the variabkg and
got the same feedback as before. At 70mn, the ¢edold them to test the variable
ym as indicated in the text of the problem. Casyopéeated (infinity, +infinity)



for the domain. They were not happy and tried nol fa way to redefine this domain
into [0;3]. Giving up, they defined the function gy of “automatic modeling” and
it was accepted by Casyopée. They tried a graphiEsblution, but they were
confused by the graphical window and needed tdgkgt by the teacher. He showed
them how Casyopée offers a dynamic link betweaaaeton the graph and the free
point from which the function is built. The studemtbserved that when they moved
M horizontally in the geometry window, the trace donesmove (Fig. 1, right).

The written report prepared by Elina and Chloé diagled in two parts: Dynamic
geometry and Casyopée (i.e. the symbolic window)thke first one they describe
their exploration for calculating the areas for thaluesa=3 and b=6 to the
parameters: “in our case, the aredBMC must be 6. Thus we mow in order that
the value displayed is 6. We see that there arepwgitions ofM and only they-
coordinate has an influence on the areaxtheordinate does not change the area”.
As for their work in the symbolic window they writbve chose the variablen”

[2]. And then “we draw the functions,, — 4 BxBC andy , —»#Z£EC” copying the
formula given by Casyopée and not mentioning thealn. They copy also the
equation and the two solutions. They conclude: Shbisfy the condition, thg-
coordinate of M should bgv=5b/3 orym=b/3". About the difficulties encountered,

the students mention: “Finding that olyras an influence on the areaBWIC, and
then choosingM as an independent variable”.

THE ECONOMY OF LEARNING SITUATIONS: A DOUBLE ANALYS IS
A posteriori analysis from a TDS perspective

The situation was certainly productive in the setls® students could grasp the
necessity of choosing an adequate independentol@iiia order that Casyopée will
be able to express a function, but they were tanfgiving an algebraic signification
relatively to this necessity and to the other atge&bobjects involved, like for
instance the parameters. Casyopée’s feedback weerallg not well understood.
Eventually, it conflicted with students’ views, fimistance relatively to the domain. It
happened that the teacher had to intervene to dlpy forward in the task. He
tended to offer more than a technical help to sitgjesteering them towards steps of
the solution and then breaking the intended adiciact This was also the case in
other Casyopée experiments conducted in ReMaths,Tthe influence of the
provided feedback seems to be less productivedgkpacted as regards the students’
attempts to identify key steps in their matheméateark. Relatively to the question
at stake of how students could appropriate thecehof the independent variable, as
well as other functionalities already encounteredthe preceding sessions, and
through this appropriation progress in their untderding of functions, the
appreciation is then mixed: the milieu highlight$ians that students can identify as
steps in the solution; then students are “pushedatds these actions; however, this
does not guarantee that they acquire an appropmaterstanding of these actions.



Analysis from a constructionist perspective

The issue of design was mainly materialised throtigh preparation of a milieu
facilitating - in constructionist terms- meaninghgeation for function as covariation.
The reported episode reveals students’ diversesva@he symbolic forms provided
by the tool and difficulties to relate their selentof variables to the mathematical
concept of function. To analyze this divergence,refer totwo gaps at the level of
designand try to connect it to constructionism: one teado with the design of the
environment and, in particulathe nature of therovided feedbacknd the second
with the teacher’s roleAs for the first, the level of design of Casyo@ddhat time
did not provide students with opportunities to takene actions in relation to the
provided feedback. Thus, we see that students coelcexperiment directly with
notation in Casyopée. The correct symbolic forrmathematical terms appears as a
‘closed’ answer pre-supposing in some way studamderstanding of the standard
algebraic symbolism of functional dependencies.ofstructionist view on design
should stress that further development of meanmgeration can be facilitated if
students have at their disposal a mechanism topukate so as to take further action
based on the provided feedback (i.e. to ‘do somgthwith the tool). Learning
activity within constructionist computational mediary often consists of students’
engagement in debugging intentionally designeddyugehaviors of objects. These
objects operate as means to challenge productianimg generation and provoke
further interpretations and actions by studentsusThconstructionism should
emphasize thexpressivenessf computational environments a design principle,
I.e. design based on the use of dynamic represemsathat make algebraic symbols
and relationships more concrete and meaningfutiferstudents through the ability
to express mathematical ideas possibly in ways mhay diverge from standard
mathematicgsee for example the idea afitoexpressionwhich privileges the role
of a programming language as a mechanism to comtpgdcts by expressing
explicitly the relationships between them, Nosalgt1997). The second point has to
do with the role of the teacher. In the episodecarm see that the teacher seems to be
reluctant to intervene and does it only when hézesthat the students face strong
problems in coping with the provided functionaktiand integrating them in their
activity. In a constructionist perspective, in gast, teacher’s interactions are more
participatory from the teachers’ side and moretagjia in encouraging students to
elaborate emergent ideas and generalisations.

DISCUSSION

The motivations underlying the Casyopée experinmeet at a general level those
involved for the use of multirepresentational, D&%l CAS software. Its specificity
is that it focuses on key points of the transitiaom function in a DGS to symbolic
functions, aiming to facilitate students’ accesssymbolic forms. The task in the
experiment is to find a solution of a problem. #ncbe explored in geometrical
settings, but can be really achieved only aftertthasition to symbolic functions.



The milieu is then inspired by TDS, the task beamgllenging and the transition
being conceived as a non obvious step. Feedbaekprapared in the software in
order to ensure that interaction will actually pu¢ aimed knowledge at stake, TDS
rely on an a priori analysis and uses an a posteaitmalysis to compare actual
procedures of students to the a priori expectedquiares to bring evidence that the
milieu is adequate for the targeted knowledge. Tikawhat it was aimed in the
Casyopée experiment. However, as indicated abaweapipreciation is mixed: the
interaction seems to produce effects in terms tbacen the environment, but not to
really make sense for the students. The constmnistionterpretation points to an
important fact: Casyopée is a mathematical toal, most of the feedback it provides
supposes algebraic knowledge, or coordination beEtvwgpeometry and algebra, that
Is precisely at stake. In this vein, constructibaisalysis brings to the fore issues of
tool design emphasising the importance of designicels allowing students’
meaningful use of the available infrastructure loyging connections between
students’ action and tool formalism. The intervens of the teacher constitute a
point of common interest in the double analysiseyrare seen by constructionism as
participatory and strategic in enhancing studeatgloratory activity. In contrast,
TDS cares for adidacticity that could be brokenthase interventions, by way of
“Topaze” effects. However, in the Casyopée expeamin@& happens that total
adidacticity would have led the students to an sspa

Constructionist and TDS analyses of learning sibmatin the Casyopée experiment
in part converge when they consider a milieu angdart diverge because they have
different conceptions of this milieu. TDS analysiriented towards evaluating the
reproducibility of situations of learning aiming given knowledge, and
constructionist analysis towards identifying ocemces of progression of meaning.
However, this “double analysis” is clearly deeped delps to look at the economy
of learning situations about functions with compsit@as a particularly complex
qguestion. On the one hand, the multiplicity of rotennected representations of
functions, of students’ possible actions on theas, well as of students’
understanding of these representations and adasans obstacle to the possibility of
a controlled milieu, and of adidacticity consistevith TDS. On the other hand,
relying exclusively on uncontrolled meaning generatvould question the extent to
which connections can be made between knowledde Ibyiinteracting with the
milieu (“knowing”) and the standard mathematical owtedge at stake
(“*knowledge”).

NOTES

1. “Representing Mathematics with Digital Mediath&P, IST-4-26751-STP, 2005-2004tp://remath.cti.gr

2. Actually, xM was the label of the button allowing choosing dalde, which explains why the students mentios thi
label, while being aware ofM being the right choice. This label changed in eghent versions of Casyopée. The



design decision at the time was to implement keipas at Casyopée’s interface by way of buttons lik DGS. The
difficulty was to find icons that could accurategpresent the nature of the action.
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