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While much research has demonstrated the positive impact of mathematical 
modelling on student learning, considerably less research has focused on the 
teaching practices that are needed to support modelling approaches to student 
learning. In this study, we examined the characteristics of teaching in a 
classroom setting where the students engaged in a sequence of model 
development tasks designed to support their abilities to create and interpret 
models of changing physical phenomena. The results illustrate the demands that 
modelling tasks place on teachers, ways of responding to those demands, and 
suggest needed pedagogical shifts in teaching practices. 
Over the past three decades, much research has focused on the potential of 
mathematical modelling to impact student learning throughout K-16 
mathematics. But despite the evidence from research on the positive impact on 
student learning, progress has been slow in the widespread adoption of 
mathematical modelling as a classroom practice (Blum & Borromeo Ferri, 2009; 
Maass, 2011). While many factors influence changes in schooling, one crucial 
factor in any kind of change in classroom practices is the teacher (Godwin & 
Sutherland, 2004; Ruthven, Deaney & Hennessy, 2009). But the teaching 
practices associated with mathematical modelling have received somewhat 
limited attention from researchers (c.f., Blum & Borromeo Ferri, 2009; Doerr, 
2006; Lingefjard & Meier, 2010; Maass, 2011; Wake, 2011; and others). As we 
have argued elsewhere (Doerr, 2007; Doerr & Lesh, 2011), the knowledge 
needed for teaching mathematics through modelling and applications appears to 
differ in some significant ways from traditional approaches to teaching 
mathematics. In this paper, we examine the nature of teaching practices that 
support student learning through mathematical modelling, and thereby 
contribute to an understanding of the knowledge needed for teaching 
mathematics through modelling. To that end, we investigated the characteristics 
of teaching in a pre-college classroom setting where the students engaged in a 
sequence of model development tasks to support their abilities to create and 
interpret models of changing physical phenomena.  

THEORETICAL BACKGROUND 
Over the last twenty years, researchers have documented the difficulties that 
students encounter in learning to create and interpret models of changing 
phenomena (Carlson et al., 2002; Michelsen, 2006; Thompson, 1994). To 
address these difficulties, we designed a model development sequence (Doerr & 
English, 2003; Lesh et al., 2003) to support the development of students’ 
abilities to model changing physical phenomena. This modelling approach to 



  
student learning is what Kaiser and Sriraman (2006) identify as a “contextual 
modelling” perspective, emphasizing tasks that motivate students to develop the 
mathematics needed to make sense of meaningful situations. Many researchers 
have used model eliciting activities (MEAs) developed by Lesh and colleagues 
(Lesh et al., 2000; Lesh & Zawojewski, 2007) to investigate the development of 
students’ conceptual systems (or models) in a wide range of settings and 
contexts. In this study, however, we moved beyond a single model eliciting 
activity to design a model development sequence whose goal was to produce a 
conceptual system (or model) that can be used to make sense of a collection of 
structurally similar physical world contexts.  
A model development sequence begins with a model eliciting activity, in this 
case, designed to confront the student with the need for the construct of average 
rate of change. This construct is central to students’ abilities to create and 
interpret models of changing phenomena. The MEA is followed by one or more 
model exploration activities and model application activities (c.f., Doerr & 
English, 2003; Lesh et al., 2003). Model exploration activities focus on the 
underlying structure of the elicited model and on the strengths of various 
representations and ways of using representations productively. Model 
application activities engage students in applying their model to new situations, 
which can result in further adaptations to their model, extending or deepening 
understandings of representations, and refining language for interpreting and 
describing the context. In this study, the model development sequence was 
intended to support the development of the students’ generalized understanding 
of average rate of change and their abilities to create and interpret models of 
changing phenomena. Throughout model development sequences, students are 
engaged in multiple cycles of descriptions, interpretations, conjectures and 
explanations that are iteratively refined while interacting with other students and 
participating in teacher-led class discussions.  
The diversity and complexity of the multiple cycles of the development of the 
students’ models places substantial knowledge demands on the teacher, as 
teaching “becomes more open and less predictable” (Blum & Borromeo Ferri, 
2009, p. 47). As Maass (2011) found in her study, responding to the openness of 
modelling tasks was especially challenging for teachers with a “static” 
disposition with its strong focus on final examinations and on teacher-centered 
pedagogies. The openness of modelling tasks, which is in part a consequence of 
the diversity of student thinking, leaves the teacher with the need to develop 
strategies to support the students in making progress with the task, but without 
directly showing the students how to resolve their difficulties (Lingefjard & 
Meier, 2010). However, as Lingefjard and Meier note, “it is obviously not 
enough to ask the teacher to avoid giving a solution to their problem” (p. 106). 
What the teacher needs is a range of strategies to draw on and, just as 
importantly, a set of rationales that will enable her to interpret the events of the 
classroom, select tasks to further the development of students’ models, and 



  
engage students in the self-evaluation of their models (Doerr, 2007). Such a 
range of strategies and rationales would provide the basis for responding to 
students without doing the task for them, or as Blum and Borromeo Ferri (2009) 
characterize it, for maintaining the balance between providing sufficient 
guidance for the students while preserving student independence. Characterizing 
such strategies and elaborating their underlying rationales by the teacher is the 
focus of this study. To that end, our study was guided by the following question: 
what are the characteristics of the teaching practices that support students’ 
abilities to create and interpret models of changing physical phenomena when 
engaged in a model application activity? 

METHODOLOGY 
This study used design-based research as an approach to studying teaching and 
learning in the classroom with the intent of contributing to theories of teaching 
while producing outcomes that are useful in naturalistic settings (Cobb et al., 
2003). This design experiment began with the collaborative framing by the 
researchers and the teacher (third author) of a model development sequence that 
was intended to support students in developing their concept of average rate of 
change and in creating and interpreting models of changing physical 
phenomena. We first describe the model application activity that occurred near 
the end of the model development sequence, elaborating the intended learning 
goals for the students. We then describe the context in which the teaching 
occurred and the iterative cycles of analysis that occurred to understand the 
teacher’s actions in the classroom and her interpretations of those actions.  
In the model application activity examined in this paper, students were asked (1) 
to create a model of the intensity of light with respect to the distance from the 
light source, (2) to analyze the average rates of change of the intensity at varying 
distances from the light source and (3) to describe the change in the average 
rates of change as the distance from the light source increased. The students 
were given flashlights, meter sticks and light sensors to use with their graphing 
calculators to measure and collect data of how the light intensity varied with the 
distance from the light source. Light intensity changes with the distance from 
the light source at a non-constant rate and can be modelled by an inverse square 
function. In earlier model exploration tasks, the students had explored the 
patterns of change in linear and exponential functions. However, the patterns of 
change for an inverse square function are not approximated by either of these 
patterns, and hence students needed to draw on other known functions for this 
context and provide a rationale for choosing a function. Since all of the students 
had taken a prior course in physics, it is nearly certain that they had studied the 
inverse square law that applies in this situation. However, we did not assume 
that the students had investigated or understood or would recall that the reason 
for the inverse square law in this context is related to the geometry of the sphere. 
Thus, having students make sense of the relationship to the surface area of the 
sphere and ways of representing that relationship was part of this model 



  
application activity. In addition, students needed to apply their model of 
average rate of change in a context where the independent variable was not time, 
but was distance. Finally, students had to interpret negative average rates of 
change in terms of the light intensity and distance. Overall, this model 
application task required the students to apply and extend their concept of 
average rate of change to a new context of changing physical phenomena.  

CONTEXT AND PARTICIPANTS 
The sequence of model development tasks formed the basis for a six-week 
course for students who were preparing to enter their university studies. The 
teacher had four years of experience teaching secondary and college students; 
this was her third year teaching the summer course. There were 35 students in 
two sections of the course, all of whom had volunteered to participate in the 
study. Eleven of the students were female and 24 were male. All students had 
completed four years of study of high school mathematics; 21 students had 
studied calculus in high school and 14 had not studied any calculus. Pairs of 
students completed the model application activity over the course of three 
lessons. Throughout their work on the task, the teacher led several whole-class 
discussions that involved students in discussing their emerging models of light 
intensity and representations of how that intensity changes. The teacher also 
engaged in conversations with pairs of students as they created their model of 
light intensity and considered how the intensity changes with respect to distance. 

DATA SOURCES AND ANALYSIS 
The data sources included videotapes of all class sessions, written field notes 
and memos, class materials such as worksheets and a record of board work, the 
teacher’s lesson plans and annotations made by the teacher during the lesson. 
Following each lesson, there was an audio taped debriefing session with the 
teacher, which captured the teacher’s reflections on the lesson and any changes 
to the plans for subsequent lessons. The model application activity took place 
over three lessons; each lesson lasted one hour and 50 minutes. Our analytic 
approach was a collaborative examination of the teacher’s actions in and 
interpretations of classroom events. The analysis of the data took place in two 
phases. Consistent with the iterative approach of design-based research, the first 
phase of analysis took place during the six weeks of teaching. In this phase, the 
research team met with the teacher and regularly engaged in discussion about 
the model development sequence, the progress of the class as a whole, and our 
observations about students’ thinking about average rate of change and their use 
of mathematical representations for expressing their ideas. Analytic memos 
were written by members of the research team to document their emerging 
understandings of the teaching practices and observations about student 
learning.  
In the second phase of the analysis, members of the research team viewed the 
videotapes and wrote a detailed script of each lesson, identifying the nature of 



  
the teacher’s activity and the teaching dilemmas that occurred in each lesson. 
Following the principles of grounded theory (Strauss & Corbin, 1998), codes 
were developed to categorize the teaching practices. As we analyzed the 
practices, we sought confirming and disconfirming evidence in the teacher’s 
lesson plans and annotations during the lesson, and with the teacher’s 
perspective on the lesson from the de-briefing interviews. We present two of the 
results of our analysis of the teaching practices that supported the students as 
they created their models: (1) revealing and revising student ideas; and (2) 
developing and refining representations. We also discuss the difficulties 
encountered by the teacher in balancing the tension between guiding students 
and maintaining their independence. 

RESULTS 
Revealing and revising student ideas 
Throughout the model application activity, the teacher engaged the students in 
revealing and revising their ideas about how the light intensity changed as the 
distance from the light source increased. This episode occurred at the beginning 
of the activity. The teacher asked the students about their intuitive ideas on the 
changes in light intensity, based on their everyday experiences with light. She 
posed the following question: “Imagine the tail lights of a car moving at a 
constant speed away from you. Is the light intensity (1) fading at a constant rate, 
(2) fading slowly at first and then quickly, (3) fading quickly at first and then 
slowly, and (4) unsure.” The students responded to this question using a student 
response system (also known as voting systems or “clickers”), with the results 
shown in Table 1. The teacher routinely used the option of “unsure” to 
discourage students from guessing and to encourage students who see 
difficulties or ambiguities in a question to continue thinking, without being 
forced to choose a particular response.  

Responses Number and Percent Response 
Fading at a constant rate 8   57% 
Fading slowly then quickly 4   29% 
Fading quickly then slowly 1    7% 
Unsure 1    7% 

Table 1: Student responses to the rate at which light intensity changes 

The teacher engaged the students in a discussion about their reasoning and 
found that students had several different perspectives on this context. One 
student argued: “no matter how big the light is, you can see it at different 
distances”; this argument suggests that the light intensity does not change with 
respect to distance. Several students offered an argument in support of fading at 
a constant rate by reasoning that “the speed of the car is constant.” Others 
focused on the constant speed of light and reasoned that even though the 



  
constant speed of light is different from the constant speed of the car “it’s like 
running in a train” where one can simply add the speeds. However, some 
students were sceptical about the relationship of the constancy of the speed of 
the car and of the speed of light to the intensity of the light. One student posed 
the question: “the car moves constantly, but how do you see the light?” and 
another asked: “we’re talking about intensity. How does that relate to the speed 
of light?” This discussion was entirely an argument among the students, and 
revealed their reasoning about how the intensity of light changes at different 
distances from the light source.  
At this juncture, the teacher stepped in, leaving their arguments unresolved, and 
gave them a task that would enable them to evaluate and potentially revise their 
ideas. The teacher signalled this as she said: “We are going to sort this out.” She 
gave them data collection equipment that they could use to measure light 
intensity at different distances from a point source of light. The teacher 
deliberately did not discuss their ideas further because, as she later commented, 
she did “not want to give it all away.” Rather, she intended for the students to 
engage in collecting and analyzing data that would enable them to answer this 
question for themselves. By collecting and graphing data, the students evaluated 
the alternatives and came to the resolution that the intensity of light decreased at 
a non-constant rate as the distance from the light source increased. 

Developing and refining representations 
In keeping with the methodology of design-based research, this model 
application activity was developed through several iterations. In previous 
versions, we found that students encountered difficulties in developing 
meaningful representations of the change in light intensity with respect to 
distance from the light source. Hence, as we began this modelling task with the 
students, we explicitly focused on students’ images of light intensity. In the 
lesson following the data collection, the teacher posed a question, analogous to 
that in the previous episode, but intended to further develop students’ 
representations of light intensity. The students were asked to interpret a “dot” 
representation of intensity at various distances from a flash bulb and to find the 
intensity at two unknown distances (see left side in Figure 1). The students 
initially had difficulty understanding and using this representation. The teacher 
then introduced the table representation shown on the right in Figure 1. The 
students recognized that an equation fitting this data would be useful, as one 
student commented that we “need an equation, but we don’t know what it would 
be.”  
At this juncture, the teacher polled the students to find out which parent graph 
they thought would best correspond to the table of data, thus revealing (as in the 
previous episode) students’ ideas about a possible symbolic representation. Most 
of the students focused on two of the answers, with 57% (n=8) choosing an 
exponential function, 29% (n=4) choosing y = 1 / x , and with 7% (n=1) each 



  
choosing y=1/x and y=1/x2. As before, the teacher asked the students to 
resolve the question of finding an appropriate equation to fit the data. Using 
their graphing calculators and working with partners, the students rejected 
y = 1 / x  as a parent graph. Two pairs of students came up with two distinct 
functions: y = 1400(1 / x2 )  and y = 715(0.58)x +12 , both of which fit the given data 
reasonably well. However, this response from the students had not been 
anticipated by the teacher in her planning and left her uncertain, in the moment 
of teaching, as to how to proceed. 
 
 

 

 

 

 

Figure 1: A dot and table representation of light intensity 

Unlike the previous episode, where the teacher knew that collecting and 
graphing data would enable the students to evaluate and revise their ideas about 
the changing intensity of light, it was less clear how to engage the students in a 
critique of these two functions, especially since both functions were a 
reasonably good fit of the data. The teacher juxtaposed the projection of the 
graph of each function and the data, and turned the question over to the students, 
asking “which [function] makes more sense?” Several students saw the 
exponential function as “more accurate” and one student argued that the graph 
of y = 1400(1 / x2 )  would show up in the second quadrant and hence “wouldn’t be 
accurate to the data.” Still uncertain as to how to engage the students in a 
critique of these functions, the teacher re-polled the students as to which parent 
function would best model the data. This time, 86% (n=12) of the students chose 
an exponential function and 14% (n=2) chose y=1/x2. Re-polling the students 
gave the teacher some additional time to think about how to proceed; during this 
time she quickly conferred with a member of the research team who suggested 
focusing the students’ attention on the long term behaviour of both functions. 
The teacher linked the long term behaviour of the function to the students’ 
intuitions that the intensity of light should get “closer and closer to zero as we 
get out further and further.” This led them to reject the exponential decay 
function, which did not approach zero.  
For the teacher, this somewhat partial resolution was critically important, since 
the inverse squared behaviour needed to be understood as a meaningful and 
explanatory representation of the change in light intensity with respect to 
distance, not simply as a “good fit.” However, the issue we wish to raise is that 
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knowing how to further the students’ own thinking, in the moment of teaching, 
was neither obvious nor easy from the perspective of the teacher. In this 
episode, as the teacher ended the lesson, she focused the students’ attention on 
the critical question of why an inverse squared representation was reasonable. 
She said that the “thing I want you to think about is ‘why’? Why does this 
inverse square function make sense in this situation?” To answer this question, 
the students would need to further develop their ideas about representing how 
light intensity changes in terms of the distance from the light source. 
In the next lesson, the teacher again focused the students’ attention on making 
sense of how light intensity is changing with respect to distance. She began by 
asking the students about “why it [an inverse square function] would make 
sense?” and “How do you think about light coming out of a light source?” 
Several students responded with ideas about light going in “all directions 
equally,” “travels evenly,” and “in all directions.” The teacher pursued these 
ideas and asked: “what image do you think of when you think of all directions 
equally?” One student offered an image of rays: “near the point source, they are 
really close. But then they go apart. … As they [the rays] get farther from the 
point source, they get farther from each other. … And that’s why the intensity is 
less.” Several other students offered an image of “spheres” moving out from the 
light source.  
The discussion continued as the teacher built on these images, with student 
generated representations of enlarging spheres and re-visiting the dot-based 
representation of intensity; this discussion eventually led to the formula for the 
surface area of the sphere. The students had moved from the dots representation, 
to a table representation (both shown in Figure 1), to a symbolic representation, 
to images of rays and spheres, and to the formula for the surface area of a 
sphere. At this juncture, the teacher was again faced with deciding what to do 
next. Rather than guide the students through bringing these ideas together, the 
teacher turned these elements of representing their model of changing light 
intensity back to students, asking them to think “about all these ideas and put 
some of this together … One of the questions is why do you think light behaves 
this way [as an inverse square]?” She encouraged them to use the 
representations that had been discussed as “ways to reason about that” and thus 
develop and refine their representations of changing light intensity.  

DISCUSSION AND CONCLUSIONS 
This study began with the design of a model development sequence intended to 
develop students’ abilities to create and interpret models of changing 
phenomena. The design of that sequence provided multiple opportunities for 
students to generate and revise ideas, to interpret and give meaning to various 
representations, and to reason about changing phenomena. When students are 
engaged in such modelling activities, teachers are likely to encounter substantial 
diversity in student thinking, including student approaches that can not be fully 



  
anticipated. This places substantial new demands on teachers to respond with 
strategies that support students in making progress with the modelling task, but 
without overly directing students in resolving their difficulties. The results of 
this study highlight two teaching practices in response to those demands. First, 
explicitly revealing the diversity of student intuitions about changing 
phenomena provided an opportunity for the teacher to engage students in 
revising their ideas. Second, supporting students in developing and refining their 
representations of changing phenomena enabled the teacher to make visible 
representations that could be useful in providing explanatory descriptions about 
the behaviour of changing phenomena. In engaging in these practices, the 
teacher encountered moments that caused tension in knowing how to 
productively proceed in the lesson without simply directing the students toward 
some known solution. In both cases, the teacher made an important pedagogical 
shift from a practice of teacher evaluation of student thinking to engaging 
students in the self-evaluation of their ideas. Such a practice is well aligned with 
preserving student independence (Blum & Borromeo Ferri, 2009).  
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